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ABSTRACT
UML specifications offer the advantage to describe software
systems while the actual task of implementing code for them
is passed to code generators that automatically produce
e.g. Java code. For safety reasons, it is necessary that the
generated code is semantically equivalent to the original
UML specification. In this paper, we present our approach
to formally verify within the Isabelle/HOL theorem prover
that a certain algorithm for Java code generation from UML
specifications is semantically correct. This proof is part of
more extensive ongoing work aiming to verify UML transfor-
mations and code generation within the Fujaba tool suite.
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1. INTRODUCTION
The generation of code from specification languages like
UML is an important aspect of the Model Driven Archi-
tecture (MDA). State-of-the-art Computer Aided Software
Engineering (CASE) tools like the Fujaba tool suite come
with such code generation mechanisms. To ensure correct
software and system behavior, it is a necessary prerequisite
that the semantics of the original UML systems is preserved
during code generation.

To ensure that such transformations are correct, formal ver-
ification is necessary. In this paper, we consider an algo-
rithm that transforms simplified Statecharts into a Java-
like language. We verify that this transformation algorithm
is correct. Therefore we formalize the semantics of State-
charts and the targeted Java subset as well as the trans-
formation algorithm within Isabelle/HOL. Furthermore, we
prove, also within Isabelle/HOL, this code generation algo-
rithm correct by showing that each Statechart specification
and the corresponding program code are bisimilar. The use
of bisimulation as equivalence criterion between Statecharts
and the Java-like programming language ensures an ade-
quate semantics formalism even for non-terminating systems
and programs. In order to obtain machine-checked proofs as
well as reusability of proofs, our proofs and formalizations
are conducted within Isabelle/HOL.

This paper describes ongoing work that is part of a larger
project aiming to verify real life transformations from UML
specifications of CASE tools to Java code. Apart from our
already finished formalization and proof work, we give a de-

tailed plan for our future work concerning verification of
MDA transformations. We believe that verification of Fu-
jaba transformations can be a major and highly interesting
research area in the future.

In Section 2, we discuss various approaches for the formal-
ization of Statecharts. After that, we explain basic founda-
tions for behavioural equivalence proofs in Isabelle/HOL in
Section 3. Our formalization of the Java-like programming
language as well as our Statechart formalization together
with the actual correctness proof is discussed in Section 4.
We discuss related work in Section 5. In Section 6, we con-
clude and present our future workplan.

2. SEMANTICS OF STATECHARTS
Statecharts are an extension of finite state machines which
are implemented in many tools and widely used in practice.
Nevertheless, the definintion of their semantics poses subtle
difficulties due to inherent ambiguities. In this section, we
first introduce Statecharts in Subsection 2.1. Afterwards, in
Subsection 2.2, we summarize how executable code, e.g. Java
code, can be generated from them automatically. In Subsec-
tion 2.3, we explain the difficulties when formally defining
the semantics of Statecharts. Finally, in Subsection 2.4, we
discuss methods to prove equivalence of Statecharts.

2.1 The Statechart Language
Statecharts [12] are a visual language which enhance fi-
nite state machines by hierarchical and parallel composi-
tion of states (and broadcast communication between par-
allel transtitions). They have found wide-spread use in the
modelling of complex dynamic behaviour and are part of the
UML standard [20] with advanced features such as history
mechanisms and extended transition trigger conditions. In
UML Statecharts, transitions as well as states can be deco-
rated with actions, i.e. statements in some imperative lan-
guage, thereby significantly increasing the expressive power
of statecharts.

2.2 Code Generation From Statecharts
There are numerous tools providing code generation from
Statecharts. Most of these employ one of the following three
strategies of code generation which are almost directly de-
rived from code generation strategies for finite automata.

• (Hierarchical) Switch/Case Loop This most simple ap-
proach creates a nested switch/case statement that



branches according to the current state and the cur-
rent event. Within a branch, transition-specific code,
i.e. the action associated with the transition, is exe-
cuted and the current state is set to the target state of
the transition. Hierarchical and concurrent structures
can be achieved using recursion.

• Table-driven approach The second approach stems from
a well-known method to implement finite state ma-
chines in compiler construction (e.g. scanner genera-
tion by the well-known unix tool “lex”). The actions
caused by an event in a specific state are stored in
a (nested) state/input table. In its most basic form,
entries in this table might only consist of output sym-
bols and successor states. When more complicated ac-
tions are used, more complex structures are necessary
for the representation of state table entries, as demon-
strated in [27]. In principle, a table-based approach is
also suited for hardware implementation in embedded
systems.

• Virtual Methods Deeply nested switch/case blocks may
not be desirable in an object oriented system. This is
especially true when code generated from a Statechart
is subject to manual modification and maintenance
(”round-trip engneering”). An alternative method of
code generation from Statecharts makes use of an ex-
tension of the state pattern [7]. In this method, each
state becomes a class in an inheritance hierarchy cre-
ated in parallel to the substate hierarchy of the state-
chart. The events consumed by these states are re-
alized as virtual method calls to the respective state
classes.

These are the basic strategies for code generation from State-
charts. A more detailed overview can be found in [27]. [26]
shows how hierarchical structuring information can be ex-
ploited to obtain smaller and more efficient code following
the table-based strategy.

In this paper, we present our verification of code generation
that follows the first strategy. In future work, we aim to
extend our correctness proof to also allow for the verification
of other generation algorithms as well.

2.3 Formal Semantics of Statecharts
The behaviour of a Statechart is modeled by a transition
system whose states correspond to the configurations of the
represented Statechart. A configuration itself is a maximum
set of Statechart states that can be active at the same time.
The actual behavior of the Statechart lies in the state transi-
tion function, describing how one configuration leads to the
next, depending on the current input symbol. A formal def-
inition of this step transition function has proven somewhat
challenging. A multitude of approaches has been taken to
define such a semantics. A comparison between 17 of these
approaches can be found in [25].

One reason for the difficulties in defining a state transition
function is the desired property of synchrony. Synchrony
means that the system should react immediately to incom-
ing events. In particular, incoming events and resulting ac-
tions should happen without delay at the same time. Most
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Figure 1: Event Conflict

of the time, this does not pose a problem physically, since
the sampling rate of the real system is typically limited and
significantly longer than the reaction time of the system.
However, using synchrony, concurrent states and broadcast
communications allow for a single event to trigger a chain
reaction of multiple transitions, called microsteps, in “zero
time”, creating a situation that is inconsistent with the no-
tion of causality (i.e. that original actions and the actions
triggered by them cannot be distinguished).

As an example, consider the event x passed to the Statechart
depicted in Figure 1 in the initial configuration (State 1,
State 4). The system will take the loop at State 1, and
also go from State 4 to State 5, since the first transition
emits the event b and synchrony causes the system to react
immediately. In the next step, if the input symbol is again
x, this leads to a contradiction, since the transition from
State 5 to State 3 causes the event a, in which case the
original transition (the loop at State 1) should not have
been taken.

The conflicts involving synchrony and negated conditions
can be resolved in different ways. One way is to consider only
globally consistent steps, which is intended in [22]. Global
consistency is difficult to achieve, since their might be mul-
tiple sets of transitions for a signal even if the state ma-
chine is deterministic. Another, more direct solution is to
take the causal order of microsteps into account and re-
quire that conditions guarding a transition only apply to
events that occurred before the transition was taken. This
kind of behavior is sometimes called local consistency. Local
consistency leads to the paradox situation that although all
microsteps take place at the same time, the order in which
they occur is not irrelevant.

Since synchrony, although a desirable property for the mod-
eling of real-time systems, causes these problems and often
leads to counter-intuitive behaviour (especially when more
complicated actions are allowed), more “practical” seman-
tics, including the STATEMATE [13] and the UML [3] se-
mantics, disregard this property and realize a step-by-step



behaviour, in which events and actions generated in one step
do not become visible until the next step. In UML, this is
sometimes called run-to-completion-semantics [3].

Defining a step function becomes even more problematic
when we aim to develop a compositional semantics. In gen-
eral, compositional semantics means that the semantics of
a larger program or system can be derived from the seman-
tics of its parts. Especially in the case of parallel composi-
tion, Statecharts are “noncompositional” in nature – the be-
haviour of the concurrent state can differ significantly from
that of its substates when parallel transitions have overlap-
ping actions and conditions. When being concerned with
the equivalence of Statecharts, it is important to define an
equivalence as a congruence with respect to the Statechart
constructors. This specifically means that states that are re-
garded as equivalent should again yield an equivalent State-
chart when composed with the same state and Statechart
constructor. [24] and [17] demonstrate that such an equiva-
lence relation cannot be defined by regarding only complete
steps. Instead, the causal ordering of microsteps needs to be-
come part of the semantics. [24] achieves this by construct-
ing more complex labels in the resulting transition system,
which then contain information on how the respective step
was constructed out of microsteps. [17] use two different
kinds of transitions, microstep transitions and σ-transitions,
which determine the beginning and completion of a step, to
incorporate information about causal ordering directly into
the transition system.

2.4 Equivalences of Statecharts
The ability to prove the equivalence of Statecharts allows us
to prove the correctness of elementary Statechart-to-State-
chart-transformations. [6] present a collection of 23 such
transformations, e.g. splitting a state or shifting a tran-
sition up and down the substate hierarchy. To prove the
semantical correctness of such a transformation, a suitable
Statechart semantics is needed. Since we are interested in lo-
cal Statechart transformations, compositionality becomes an
even more important issue here. In [18], a number of equiv-
alences (which are originally introduced in [5]) is applied to
the labelled transition systems defined by a slight variation
of the semantics in [24]. Moreover, congruence properties
are studied with respect to Statechart constructor opera-
tions. They show that (of the six investigated relations),
the weakest relation between Statecharts that is still a con-
gruence is bisimilarity between their corresponding labelled
transition systems.

In this paper, we consider a restricted subset of Statecharts
consisting of non-hierarchical automata without concurrency
and show how their equivalence can be defined by bisimula-
tion in Isabelle/HOL. In the following section, we introduce
some basics about the theorem prover Isabelle/ HOL as well
as our formulation of bisimulation. Afterwards, in Section 4,
we use this formalization to prove the equivalence between
the considered restricted set of Statecharts and the Java
code generated from them.

3. PROOF FOUNDATIONS: BISIMULATION
AND ISABELLE/HOL

Java−like source code

Implementation Verification
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Figure 2: Verification of Code Generation

This section describes bisimulation as the method of choice
for transformation verification. Moreover, we desribe some
Isabelle/HOL related aspects.

3.1 Bisimulation
Our principle idea is to regard a Statechart and its trans-
formation –a program in a higher programming language–
as semantically equivalent if they denote the same observ-
able behaviour. For example in a deterministic specification,
they must have the same sequences of observable states.
Figure 2 shows the principle to prove such a transforma-
tion correct. One needs a Statechart semantics and a target
language semantics as well as mappings from concrete State-
charts and programs to their respective semantics. To verify
a transformation, one has to show that the semantics of the
original system is preserved during its transformation. In
our case, this means that the sequences of observable states
are the same for both Statechart and generated program.
On the semantics side, this means that they have to bisimu-
late each other, i.e. that their semantics are in a bisimulation
relation.

As a basic prerequisite, the semantics of Statecharts and
Java-like programs must be comparable. For this purpose,
we express their semantics as a Kripke structure.

Definition 1 (Kripke Structures). A Kripke struc-
ture is a five tuple (AP, S, R, S0, L) where AP is a set of
atomic propositions, S is a set of states, R is a transition
relation, S0 is the initial state, and L is a labeling function
mapping states to sets of atomic propositions. �

Hence, a Kripke structure is equivalent to an annotated state
transition system.

Definition 2 (Bisimulation Relation [4]). Let M =
(AP, S, R, S0, L) and M ′ = (AP, S′, R′, S′

0, L
′) be two Kripke

structures with the same set of atomic propositions AP . A
relation B ⊆ S × S′ is a bisimulation relation between M
and M ′ if and only if for all s and s′, if B(s, s′) then the
following conditions hold:

1. L(s) = L′(s′)



2. For every state s1 such that R(s, s1) there is s′
1 such

that R′(s′, s′
1) and B(s1, s

′
1)

3. For every state s′
1 such that R(s′, s′

1) there is s1 such
that R′(s, s1) and B(s1, s

′
1) �

We get a Kripke structure representing the semantics of a
Statechart by unrolling its configuration transitions. These
correspond to the transition relation R in the Kripke struc-
ture. The states S of a Kripke structure correspond to con-
figurations in Statecharts with S0 being the initial config-
uration. We encode a stream of upcoming input events as
well as the current execution time in the Kripke structure
states, too. A Kripke structure may have infinitely many
states. This corresponds to a non-terminating Statechart.

We can describe the semantics of a program in a higher pro-
gramming language as a Kripke structure M : If we specify
its semantics such that the execution of a single instruc-
tion is atomic, the semantics of a program is specified by
a state and a state transition function. Each state may
consist of the current execution state and memory and vari-
able mappings. Kripke structures are used as follows for
the specification of program semantics: The atomic propo-
sitions represent the variable mapping, memory etc. S is the
set of states reachable within the execution of the program
M . R represents possible state transitions and the condi-
tions under which they appear. S0 is the initial state. L is a
labeling function mapping states to their observable parts.
This is appropriate for both Statecharts and programming
language. Two programs, or a Statechart and a Java-like
program, resp., are bisimilar if there exists a bisimulation
relation B such that the initial states of both programs are
within the relation.

If we describe the semantics of a Statechart as a Kripke
structure M and the semantics of a corresponding program
in a higher programming language as a Kripke structure M ′,
then the bisimulation relation B expresses behavioral equiv-
alence, with an equivalence criterion that we can choose
freely: E.g. we can restrict the variables that appear in states
– as well as in the atomic propositions – to input/output
values. Then L(s) = L′(s′) checks state equivalence. With
the notion of bisimulation, we have a formal criterion under
which a program and a Statechart show the same behavior.

In the case of deterministic systems that we examine in this
paper, the requirements for a bisimulation get even simpler:
We regard two programs as semantically equivalent iff:

• They start with equivalent initial states s and s′. This
is denoted s 'O s′ where O is some set of observable
actions. By equivalence we mean that the observable
parts of the states must be the same, corresponding to
the requirement L(s) = L′(s′) in Definition 2.

• For two states s and s′ in the bisimulation relation, we
require that the succeeding states are equivalent again.
This is formalized in Isabelle/HOL as:
∀ s s′ .s 'O s′ −→ next s 'O next s′

where next returns the succeeding state.

This notion of program and Statechart equivalence captures
very elegantly the semantics of both terminating and non-
terminating programs and Statecharts. With its state ab-
straction, it is flexible enough to prove most transformations
and optimizations correct. If we want to prove the correct-
ness of a code generation algorithm from Statecharts, we
have to show that Statechart and generated program(code)
denote the same sequence of observable states which is ex-
actly what a bisimulation proof does.

Bismulation may be defined on Kripke structures. A math-
ematically more elegant approach is to use coalgebraic data
types instead of Kripke structures [14].

3.2 Isabelle/HOL-Specific Aspects
Isabelle/HOL is a generic higher order logic (HOL) theorem
prover ensuring a very high expressivness of specifications.
Theorem provers can be used to create specifications, formu-
late lemmata and theorems on them and prove them correct.
Unlike model checking, working with theorem provers, espe-
cially those using higher order logics, is highly interactive.
Specifications have to be designed very carefully in order to
be able to prove them correct. The process of proving a sys-
tem specification correct takes some effort but often reveals
errors in the specification that would have been overlooked
otherwise.

In Isabelle/HOL, bisimulation can be formulated in multiple
ways. A very elegant way is to use coalgebraic datatypes,
e.g. lazy lists [21], which in most cases of practical relevance
come automatically with a bisimulation principle. In con-
trast to model checking, our Isabelle proofs verify complete
semantical equivalence and not just certain aspects or con-
ditions.

4. VERIFYING THE TRANSFORMATION
FROM UML TO JAVA

In this section, we present our verification of Java code gen-
eration from UML models. Therefore, we consider a simpli-
fied subset of UML Statecharts, namely finite state machines
(FSMs). To verify code generation, i.e. the transformation
from an FSM to a target language program, a semantics for
both FSMs and the target language with the same semantic
domain is required. As already explained in the previous sec-
tion, we concentrate on observational equalivalence by mod-
elling semantics as the state transition sequences that can be
observed during execution. In Subsection 4.1, we show how
we represent FSMs and their semantics in Isabelle/HOL.
Then, in Subsection 4.2, we introduce our target program-
ming language WSC that contains while, switch, and case
statements. The code generation algorithm is given in Sub-
section 4.3. Its correctness proof is presented in Subsec-
tion 4.4.

4.1 Formalization of Finite State Machines
Finite state machines are formalized as tuples (S, E). S is a
list of states having arbitrary type. This allows in particular
for hierarchical FSMs since the type of a state can be again
an FSM. (Note that in the work presented here, we have not
dealt with hierarchical FSMs. But since we want to so soon,
we have already adjusted the specifications for this purpose.)
E is a list of transitions connecting the states in S. A transi-



tion consists of its source and target (which are represented
by the position of the source and target states in the state
list S), a trigger symbol and an action symbol. We enhance
the set of action symbols by the new symbol silence. With
this extension, we make sure that every transition has an
action associated with it.

Our decision to use a list to store the states of a Statechart
has many benefits. It eliminates the need to find an ordering
of states when generating code. Moreover, it is suitable for
hierarchical automata since lists are inductive types. Active
states can now be referenced by their position in the state
list. We call the pairing of state machine and currently ac-
tive state an FSM configuration. For example, (((State 4,
State 3, State 5), ( (1,2), (1,3), (3,2))), 1) is the initial con-
figuration of the lower substate of the statechart in Figure 1.

The semantics of an FSM is the potentially infinite sequence
of output symbols it produces given a sequence of input sym-
bols. If the state machine is deterministic, i.e. there is at
most one transition for each trigger and source state, a par-
tially defined step function exists that selects this transition
(if it exists) for a given state and input symbol. The output
sequence is then calculated by the corecursive application of
this function. (For simplicity, one might think of this core-
cursively defined output sequence as the potentially infinite
list of transitions that are performed during the run of the
FSM.)

4.2 The WSC Language
As target language, we consider a simplified subset of Java
called WSC (while-switch-case) that contains switch and
case statements and a specialized while loop. The language
has only two variables of type integer, without the ability to
define new ones. WSC only incorporates the limited func-
tionality needed for the code generated from state machines,
and can be easily transformed into real Java. Our definition
of its syntax within Isabelle/HOL is given in Figure 3.

datatype WSC_Variable =
CURRENTSYMBOL | STATE
/— This language has only two variables/

datatype WSC_Expression =
CONST nat | VAR WSC_Variable

datatype WSC_Statement =
WHILE_NEXT_SYMBOL WSC_Statement |
SWITCHCASE WSC_Expression
"( WSC_Expression × WSC_Statement ) list"
WSC_Statement

( "SWITCH _ CASES { _ } DEFAULT _" ) |
ASSIGN WSC_Variable WSC_Expression |
CONS WSC_Statement WSC_Statement ("_;_") |
OUTPUT ActionType |
SKIP

Figure 3: Syntax definition of the WSC language

The semantics of WSC is defined by specifying for each
program a potentially infinite sequence of ouput symbols.
For each pair consisting of a WSC program and its current
state, we define the observable output, the successor state,
and the continuation, i.e. the remainder of the program to

be executed. Thereby, a state is a function mapping vari-
ables to values. We can then corecursively apply these func-
tions, thus yielding a potentially infinite sequence of succes-
sor states and output symbols. For a more detailed descrip-
ion of this procedure, see [16]. Since we are only interested in
output equivalence, we can disregard the sequence of states.
Obviously most WSC statements do not produce any out-
put, thus the output sequence will contain a lot of empty
events which are not generated by the corresponding stat-
echart semantics. We therefore define a cleaned sequence
which contains only the elements that are not empty.

4.3 The Code Generation Algorithm
From an initial statechart configuration (((s1, . . . , sn), (t1,
. . ., tn)), n ) we generate WSC code according to the algo-
rithm depicted in Figure 4.

while next symbol {
switch ( STATE ) {
... – for j = 1. . .n
case ( j ) {
switch ( CURRENTSSYMBOL ) {
... – for all transtions tk with source(tk) = j
case( trigger(tk) ){
STATE := target(tk);
output action(tk)
}
}
}
}
}

Figure 4: Overview of Code Generation Algorithm

The default cases of the two switch statements are not shown
– they are both empty: For the inner switch statement, this
means that an input symbol has occurred that is not the
trigger of any transition in the current state. The outer
switch statement is never reached if the original state ma-
chine is reasonably well-formed, since this would require the
STATE variable to point to a non-existing state.

4.4 Correctness Proof
This transformation from FSM to WSC is considered seman-
tically correct iff the semantics of source (i.e. FSM) and tar-
get (i.e. WSC program) are always the same. Thus, we have
to compare the output sequences of a finite state machine
and its generated WSC code. We use outWSC , outFSM resp.
to denote these output sequences. Apart from the FSM or
WSC program they need an input parameter I – a stream
of external events. Using the bisimulation principle from
section 3 to show that two sequences are equal, we have
to find and define a bisimulation relation in which they are
contained. In this case, this means a relation ∼ such that:

(1) outWSC(CodeGen(A), I) ∼ outFSM (A, I)

(2) If X ∼ Y , then either X and Y are both empty, or

(a) the first elements of X and Y are equal, and

(b) for the remaining sequences X ′ and Y ′, X ′ ∼ Y ′

holds.



lemma c2 :
assumes a1

: "X = WSC_seqOut_clean ( FA_CodeGen C ) ( i ; I )"
shows "X = Leaf ( Some ( takeStepIO C i ) )

; WSC_seqOut_clean ( FA_CodeGen ( nextConfig C i ) ) I"
proof ( cases "i ∈ set ( map Trigger ( Relevant C ) )" )
assume "i /∈ set ( map Trigger ( Relevant C ) )"
hence " WSC_seqOut ( FA_CodeGen C ) ( i ; I ) =

Leaf None ; Leaf None ; Leaf None ;

Leaf ( Some ( takeStepIO C i ) ) ; FollowCodeGen i C I"
proof ...( 29 proof steps omitted ) ...done
thus "X = Leaf ( Some ( takeStepIO C i ) )

; WSC_seqOut_clean ( FA_CodeGen ( nextConfig C i ) ) I" using a1
by ( simp ) ( unfold WSC_seqOut_clean_def FollowCodeGen_def , auto )
next
assume "i ∈ set ( map Trigger ( Relevant C ) )"
hence "WSC_seqOut ( FA_CodeGen C ) ( i ; I )

= Leaf None ; Leaf None ; Leaf None ;

Leaf ( Some ( takeStepIO C i ) ) ; Leaf None ; FollowCodeGen i C I"
proof ...( 38 proof steps omitted ) ...done
thus "X = Leaf ( Some ( takeStepIO C i ) ) ;

WSC_seqOut_clean ( FA_CodeGen ( nextConfig C i ) ) I" using a1
by ( simp ) ( unfold WSC_seqOut_clean_def FollowCodeGen_def , auto )
qed

Figure 5: Some Details of the Correctness Proof in Isabelle/HOL

theorem "state_sequenceIO A I = WSC_seqOut_clean ( FA_CodeGen A ) I"
proof -
have "bisimulation (

⋃
I A .

{ ( state_sequenceIO A I , WSC_seqOut_clean ( FA_CodeGen A ) I ) } )"
apply ( unfold bisimulation_def , rule ballI , simp , ( erule exE )+ )

...( 17 proof steps omitted ) ...
apply ( auto , simp add: c1 , simp add: c2 )

done
thus ?thesis

Figure 6: Main Correctness Theorem

For this particular case we now define a relation by

X ∼ Y :⇐⇒ ∃A I.
X = outWSC(CodeGen(A), I)
Y = outFSM (A, I)

This definition trivially fullfills requirement (1). Note that
the definition of a bisimulation relation is an artificial con-
struct for conducting proofs. Thus, it remains to be shown
that for any non-empty input sequence:

(a) The first output symbols from a state machine and its
generated WSC code are equal. This can be easily
shown by symbolically executing the first steps of our
semantics definiton for both WSC and FSMs.

(b) For the remaining output sequence pair, we can find
a finite state machine A such that its output is the
left entry of the pair and its generated WSC code out-
puts the right entry. For A, we can choose the follow
configuration Followi(A), which is the same state ma-
chine with a different initial state, namely the state
in which the original machine is in after the symbol
i has occurred. By proving some basic properties of
the semantics of both FSM and WSC, we have been

able to show within Isabelle/HOL that the code gener-
ated from Followi(A) produces as output the original
sequence minus the first symbol.

Some details of our Isabelle/HOL proof are shown in Is-
abelle/HOL syntax in Figures 5 and 6. They are used for the
proof of the final theorem from Figure 6. It proves equality
of FSM A and generated code FA CodeGen A by generating
two state sequences and defining a bisimulation containing
them. Note that Isabelle implicitly quantifies over all au-
tomata A and all kinds of input I. The preceeding lemma
(Figure 5) shows that the cleaned output of the generated
code, i.e. output of the program with all empty actions re-
moved, is the same as the the action emitted by the first
step of the state machine, takeStepIO C i, followed by the
output of the code generated from the follow configuration.
This is the core of the proof as described in Figure 6.

5. RELATED WORK
Apart from the work on semantics of Statecharts discussed
in Section 2, there is more related work on the verification
of code generation techniques. Verified code generation for
Statecharts is closly related to compiler verification since
one can regard such a code generator as a special compiler.

In the area of compiler verification, a two-fold notion of cor-



rectness has been established: One distinguishes between
the correctness of the translation algorithm itself and the
correctness of its implementation. To ensure the first kind
of correctness, the correctness of the algorithm, one needs to
verify a given translation algorithm as we have verified the
Java code generation algorithm in this paper. For the sec-
ond kind of correctness, a very promising approach is to use
program result checkers [10, 11]. Here one does not verify
the code generator itself but only its result. An independent
checker takes the source and target program, which would be
a Statechart and a Java-like program in the context of this
paper, and checks whether they have the same semantics.
This may ensure correct code generation for each distinct
run of the code generator. This technique has also become
known as translation validation [23].

Recently our own work has concentrated on verifying com-
piler optimizations. In [1], we have verified dead code elimi-
nation which is a popular compiler optimization. This work
also uses bisimulation to define semantical equivalence of
programs. In [2], we introduce a principle to model data de-
pendencies with partial orders in order to ease verification.
We hope to reuse this concept to further improve our se-
mantics formalism adequate for transformation verification
on Statecharts. Summaries can be found in [8, 9].

It should be noted that languages like the Object Constraint
Language (OCL) [19] that are frequently used in the UML
context may only be used to formulate certain properties
such as invariants and pre- and postconditions of UML spec-
ifications. In extension, our approach covers the complete
semantics of a (Statechart) specification. Hence it is possi-
ble to completely verify code generation instead of validating
only certain properties.

6. CONCLUSIONS & FUTURE WORK
In this paper, we have demonstrated that it is feasible to
specify and verify the transformation from restricted State-
charts to executable program code within the Isabelle/HOL
theorem prover. We have specified the semantics of this
restricted set of Statecharts as well as of the target pro-
gramming langugage. Moreover, we have verified a simple
code generation algorithm. For this purpose, we have in-
troduced some basic verification principles like bisimulation
and explained how they can be used to verify code gener-
ation from UML specifications or transformations on UML
specifications themselves.

For our future work, we see a large research potential in
two directions. First we want to complete our Statechart
and Java language specification, thereby in particular verify-
ing more complex code generation techniques. Secondly, we
want to verify transformations on Statecharts themselves.

The completion of the Java semantics should be straight-
forward since formalizations of the semantics of Java in Is-
abelle/HOL have become very mature in recent years, see
e.g. [15]. The authors of this paper regard the establishment
of an adequate Statecharts semantics and its formalization
in Isabelle/HOL as the most challenging task. The specifica-
tion of the code generation technique is also a very complex
task, especially when one regards optimizations and paral-

lelism. Another area of future research is the verification of
transformations on Statecharts themselves. Formal verifi-
cation of flattening Statecharts might be an actual task for
our very near future work.

To achieve verified code generation in practice, it is not suf-
ficient to only verify the code generation algorithm. The
implementation of the algorithm might introduce errors as
well, cf. our discussion on compiler verification and checkers
in Section 5. There are two different principles to guarantee
a correct implementation of the code generation algorithm.
One could verify the implementation itself. This seems like
a rather tedious task which we believe is not yet feasible for
real-life implementations. On the other hand, one can verify
a simple program result checker that checks for each run of
the code generation mechanism that the generated code is a
correct translation of the original Statechart. Such a checker
can be much simpler than the original transformation im-
plementation. Hence it is easier to verify. Alternatively,
one might even generate such a checker from its specifica-
tion automatically, also a branch of our ongoing work. Such
a checker generator could become part of the Fujaba tool
suite. We want to tackle these problems in our future work.
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