
Formal Verification of Dead Code Elimination in Isabelle/HOL

Jan Olaf Blech Lars Gesellensetter Sabine Glesner

Institute for Program Structures and Data Organization
University of Karlsruhe, Karlsruhe, Germany

Email: {blech|lars}@ipd.info.uni-karlsruhe.de, glesner@ira.uka.de

Abstract

Correct compilers are a vital precondition to ensure soft-
ware correctness. Optimizations are the most error-prone
phases in compilers. In this paper, we formally verify
dead code elimination (DCE) within the theorem prover Is-
abelle/HOL. DCE is a popular optimization in compilers
which is typically performed on the intermediate represen-
tation. In our work, we reformulate the algorithm for DCE
so that it is applicable to static single assignment (SSA)
form which is a state of the art intermediate representation
in modern compilers, thereby showing that DCE is signif-
icantly simpler on SSA form than on classical intermedi-
ate representations. Moreover, we formally prove our algo-
rithm correct within the theorem prover Isabelle/HOL. Our
program equivalence criterion used in this proof is based
on bisimulation and, hence, captures also the case of non-
termination adequately. Finally we report on our imple-
mentation of this verified DCE algorithm in the industrial-
strength Scale compiler system.

1. Introduction

We address the problem of formally proving the correct-
ness of dead code elimination (DCE) on static single as-
signment (SSA) intermediate representation, a state of the
art intermediate language in compilers. DCE is an opti-
mization available in almost all modern compilers which
eliminates statements that are not needed by the program,
thereby shortening the program representation and speed-
ing up its execution. DCE is performed on the intermediate
representation in a compiler. To formally prove the correct-
ness of DCE on SSA form, we need to solve the follow-
ing problems: First, we need to reformulate the classical
DCE algorithm to be applicable to SSA form. Secondly, we
have to prove the semantic equivalence of the original pro-
gram and the one optimized by DCE. And finally, we need

to integrate the DCE algorithm into an existing, practically
used compiler infrastructure.

We require our solution to fulfill the following require-
ments: The DCE algorithm is to be adapted for SSA repre-
sentations by exploiting their static single assignment char-
acteristic. Also, the DCE algorithm needs to produce cor-
rect results on SSA form, i.e., it does not change the seman-
tics of programs during their optimization. We want this
correctness proof to be formulated within the Isabelle/HOL
theorem prover [18]. In particular, as a prerequisite for this
proof, we need a formal semantics of SSA representations.
Moreover, the proof is to be based on a notion of program
equivalence that captures the observable behavior of pro-
grams. On top of that, the verified algorithm is to be inte-
grated into the Scale compiler system, an industrial-strength
compiler infrastructure.

Our solution follows the usual two-fold approach of data
flow analyses in compilers: First, during an analysis phase,
information about the program is collected. Afterwards, this
information is used to optimize the program. In our case,
we perform a live variables analysis that classifies all vari-
ables in a program whether they are needed to compute re-
sults which might be part of the observable behavior of the
program. In contrast to the classical live variables analysis
which requires cubic time in the worst-case, we show that
on SSA form it only needs quadratic time due to the infor-
mation inherently available in SSA representations. Having
specified this analysis phase, we state and formally verify
a DCE algorithm within the theorem prover Isabelle/HOL
which eliminates all variables that have not been classified
as live. We show that both the original program and the one
on which DCE has been performed behave equivalently. In
this proof, we use the proof principle of bisimulation. Fi-
nally we report on our implementation of DCE in the Scale
compiler system.

Our work contributes to the field of software engineer-
ing, especially software verification and compiler verifica-
tion. Correct compilers are a necessery prerequisite to en-
sure software correctness since nearly all software is written

in higher programming languages and compiled into exe-
cutable machine code afterwards. Our results show that im-
portant optimizations in realistic compilers can be formally
verified. Moreover, our methods presented here can be ap-
plied to software transformations in general, as e.g. in soft-
ware reengineering, when using design patterns, in software
composition and adaptation, in model driven architectures
(MDA) etc. Especially with our notion of semantic equiva-
lence based on bisimulations, we pay attention to the situa-
tion that not only final results of computations but also the
entire observable behavior of programs needs to be retained
during their transformation and optimization.

This paper is structured as follows: SSA form and its
advantages compared to classical intermediate languages
are introduced in Section 2. In Section 3, we state a for-
mal semantics for SSA based intermediate languages and its
formalization in the theorem prover Isabelle/HOL. In Sec-
tion 4, we summarize the classical algorithm for DCE and
our extension of it to make it applicable to SSA form. The
notion of program equivalence together with the correct-
ness proof for our DCE algorithm, both formulated within
Isabelle/HOL, can be found in Section 5. We present the
implementation of DCE in the Scale system in Section 6.
Finally related work is discussed in Section 7, and we give
a conclusion and present ideas for future work in Section 8.

2. Static Single Assignment Form

Static single assignment (SSA) form has become the pre-
ferred intermediate representation for handling all kinds of
program analyses and optimizing transformations prior to
code generation [5]. Its main merits comprise the explicit
representation of def-use-chains and, based on them, the
ease by which further dataflow information can be derived.

By definition SSA-form requires that a program and
in particular each basic block is represented as a directed
graph of elementary operations (jump / branch, memory
read/write, arithmetic operations on data) such that each
“variable” is assigned exactly once in the program text.
Only references to such variables may appear as operands
in operations. Thus, an operand explicitly indicates the data
dependency to its point of origin. The directed graph of
an SSA-representation is an overlay of the control and data
flow graph of the program. A control node may depend on
a value which forces control to conditionally follow a se-
lected path. Each basic block has one or more such control
nodes as its predecessors. At entry to a block, φ nodes,
x = φ(x1, . . . , xn), represent the unique value assigned
to variable x. This value is a selection among the values
x1, . . . , xn where xi represents the value of x defined on the
control path through the i-th predecessor of the basic block.
n is the number of predecessors of this block. Programs can
easily be transformed into SSA form, cf. [14], e.g. by a tree

add

add

jump

add

cond

control flow

data flow
b

a

Example Program:
a:=a+2; if (...) {a:=a+2;} b:=a+2;

const 2

Figure 1. SSA Representation

walk through the attributed syntax tree. The standard trans-
formation subscripts each variable. At join points, φ nodes
sort out multiple assignments to a variable corresponding to
different control flows through the program. As example,
figure 1 shows the SSA form for the program fragment:

a := a+2; if (..) {a := a+2; } b := a+2;

In the first basic block, the constant 2 is added to a. The
cond node passes control flow to the ‘then’ or to the ‘next’
block, depending on the result of the comparison. In the
‘then’ block, the constant 2 is added to the result of the pre-
vious add node. In the ‘next’ block, the φ node chooses
which reachable definition of variable ‘a’ to use, the one
before the if statement or the one of the ‘then’ block. The
names of variables do not appear since in SSA form, vari-
ables are identified with their value and also called value
numbers.

SSA representations describe imperative, i.e. state-based
computations. A virtual machine for SSA representations
starts execution with the first basic block of a given pro-
gram. After execution of the current block, control flow is
transferred to the then uniquely defined subsequent block.
Hence, the current state is characterized by the current ba-
sic block and by the outcomes of the operations in the pre-
viously executed basic blocks.

3. SSA Formalization in Isabelle/HOL

In this section, we describe the specification of SSA
based intermediate languages within the Isabelle/HOL sys-
tem. The formalization can be separated into two parts,
namely into the local data flow within basic blocks and the

2

ADD

ADD ADDMULT

ADD ADD

1

2 3

1 1

2 3

.

MULT

==>

Figure 2. Transforming SSA DAGs into SSA
Trees

global control and data flow which connects individual ba-
sic blocks. First, we formalize the data flow within basic
blocks. Then we describe the global control and data flow.
The results in this section are a summary of [2].

3.1 Data Flow within Basic Blocks

Basic blocks in SSA intermediate representations can
be regarded as directed acyclic graphs (DAGs) such that
the nodes represent operations (e.g. arithmetic operators,
constants, or φ nodes) and the edges represent the data
flow in-between. Evaluation of basic blocks takes place
in two steps: First, the φ nodes are evaluated simultane-
ously. Then, the results of the remaining operations are de-
termined. Therefore we can treat φ nodes within a given
basic block as constants. Hence, constants and φ nodes
(within a given basic block) are nodes with only outgoing
edges.

DAGs representing SSA basic blocks contain com-
mon subexpressions only once. In our formalization we
have represented such a DAG by transforming it into an
equivalent set of trees by duplicating shared subterms, cf.
Figure 2. To enable identification of equivalent subtrees,
we assign a unique number to each operation in the original
DAG and duplicate this identification number whenever
duplicating a shared subexpression. We can transform such
a set of trees into a single tree by adding a root node. In
Isabelle/HOL, these trees are formalized in the following
manner:

datatype SSATree = CONST value identifier |
PHI phiargs value identifier |
NODE operator SSATree SSATree value identifier

. . .

Nodes represent constants, φ-nodes with argument lists
and arithmetic operations. SSA basic blocks are evaluated
with the evaluation function eval tree which is defined
inductively on SSA trees, thereby using the function
get ssatree val returning the value of the root node of a
tree:

consts
eval tree :: SSATree ⇒ SSATree

primrec
eval tree (CONST val ident) = (CONST val ident)

.
eval tree (NODE operator tree1 tree2 val ident) =

(NODE operator (eval tree tree1) (eval tree tree2)

(operator (get ssatree val (eval tree tree1))

(get ssatree val (eval tree tree2)))

ident) . . .

3.2 Global Control and Data Flow

An SSA program is formalized as a list of basic blocks
in which each basic block carries four pieces of information
which integrate it into the global control and data flow:

datatype BASICBLOCK =

BB identifier ′′identifier × nat ′′

′′identifier × nat ′′ ′′SSATree list ′′

1. identifier the value number that determines
the successor basic block

2. identifier × nat successor target 1 and its rank
3. identifier × nat successor target 2 and its rank
4. SSATree list list of SSATrees containing the

operations of the basic block

To simplify the DCE correctness proof, we represent
each SSATree such that all its subtrees are also contained
in the SSATree list of their respective basic block.

In our formalization, a basic block b can have two dif-
ferent successors b′ (target 1 and target 2) specified by the
second and third field of type identifier × nat . identifier
is the number characterizing the successor block. nat spec-
ifies the rank which selects the arguments in the φ nodes in
b′: If the value of rank is i, then the ith argument in the ar-
gument list of each φ node in b′ is chosen. (Remember that
φ nodes have exactly as many operands as the basic block
has predecessor blocks.)

Execution of SSA programs is state-based. Each single
state transition corresponds to the execution of a single ba-
sic block. We define the current state by the values of the
operations executed in previous basic blocks, and by the
currently executed basic block. Therefore we specify a state
as:

– a table of values formalized as a function
(identifier ⇒ value)
indexed by value numbers

– current basic block and its rank

The state transition function (step ::
BASICBLOCK list ⇒ state ⇒ state) evaluates
basic blocks by performing the following computations:

3

– it assigns each φ-node its value
– it evaluates the basic block

(i.e. calculates and stores values in nodes)
– it collects all calculated values and

updates the table of values
– it determines the successor basic block depending on

the corresponding distinct value number,
cp. definition of the datatype BASICBLOCK

We have specified the semantics of SSA intermediate
languages via this state transition function, thereby cover-
ing all major aspects of SSA based intermediate languages.
For a complete specification with all details, we refer to [1].
Since we are working on intermediate languages without an
explicit representation of exception handling, we can safely
assume that possible occurences and treatments of excep-
tions have been replaced by if-statements in previous com-
piler phases. It should also be noted that our approach –
looking at data dependencies when reasoning about basic
blocks – is highly adequate to deal with side effects. Side
effects are extra data dependencies, hence they can be dealt
with as ordinary data dependencies in our representation.

4. Dead Code Elimination (DCE) on SSA Form

The task of dead code elimination (DCE) is to eliminate
unused statements, i.e. assignments to variables that are not
needed afterwards. In this section, we first summarize the
classical approach to DCE in Subsection 4.1. Afterwards, in
Subsection 4.2, we reformulate the DCE algorithm for SSA
form, thereby getting a worst-case quadratic time algorithm,
in contrast to the classical approach needing worst-case cu-
bic time. In Subsection 4.3, we present our formalization of
our DCE algorithm on SSA form within the theorem prover
Isabelle/HOL.

4.1 Classical DCE

DCE requires a live variables analysis. Usually, a vari-
able is defined to be live at a certain program point if there
exists a path from this program point to a use of the variable
that does not redefine the variable. In the classical approach
to data flow analyses as described in [16], the analysis is re-
garded as an instance of a monotone (and even distributive)
framework. That means that one constructs an equation sys-
tem which describes the desired analysis result. Due to the
general form of monotone frameworks, these equations do
have solutions whereat typically one is interested either in
the smallest or largest of them. These solutions can be com-
puted by fixed point algorithms that need cubic time in the
worst case. The theoretical basis of this approach is Tarski’s
fixed point theorem together with the fact that the desired
solutions are fixed points of monotone functions on finite
lattices.

entry(b1) U entry(b2)
b

control flowb1 b2

exit(b)=

Figure 3. Live Variables Analysis

In case of the live variables analysis, the program is di-
vided into blocks, each of them containing an individual
statement. Starting from the definition that all variables that
are defined in the final block of program execution are live,
the program is explored in backward direction to determine
which other variables are live as well. For each block, there
are two sets of live variables, one characterizing the vari-
ables that are live upon exit, the other those that are live
upon entry of the block. The entry-set is determined based
on the exit-set. E.g. if there is an assignment x:=a, then the
entry-set is determined by removing the variable x from the
exit-set. Moreover, all variables contained in the expression
a are inserted into the entry-set. Given a block b with only
a single successor block b′, the exit-set of b is the entry-set
of b′. If b has more than one successor block, then its exit-
set is the union of the entry-sets of all its successor blocks,
cf. Figure 3. With these definitions, one obtains a set of
equations defining the entry- and exit-sets of all blocks in
the program. This set of equations has a unique smallest
fixed point which characterizes all variables together with
the program points at which they are live in the program.
This fixed point can be computed by an iteration that needs
cubic time in the worst case.

Short outline of proof that the analysis needs cubic time:
Assume that n is the size of the program. Then there are
O(n) program points with live variables information, each
information of size O(n). Hence, the size of the overall
analysis information is O(n2). One starts the analysis by
assuming that all variables are not live and iterates by mark-
ing all variables as live which are necessary to be live in
order to fulfill the equations defining the live variables anal-
ysis. Since in each step of the fixed point iteration, at least
one more variable at some program point is marked live, the
analysis will stop after O(n2) steps. Each step needs O(n)
time so that the entire analysis stops after O(n3) time.

One can use the live variables analysis information for
dead code elimination: If a variable is not live at the exit
of a program point, if this block is an assignment to the
variable, then one can eliminate this block.

4.2. DCE on SSA

Programs in SSA form have the property that each vari-
able is statically assigned at most once in the program. This
directly implies that there are no removals from the exit-
and entry-sets which significantly simplifies the analysis.

4

For DCE on SSA form, we use the following definition of
live variables (which subsumes the classical definition pre-
sented in the previous subsection if one classifies variables
in the final block as interesting): A variable is live if it is
needed to calculate the values of other live variables or is
classified as interesting (e.g. by being observable like in-
put/output operations) or determines the control flow of the
program. The latter is necessary because otherwise an arbi-
trary terminating and an arbitrary non-terminating program
without output would be regarded semantically equivalent.

Compared to the classical approach of live variables
analysis, described in the previous subsection, the analysis
gets much simpler when operating on SSA form. Since vari-
ables in SSA form are value numbers which are assigned
only once in the static program representation and the def-
use chains are explicit, we only have a global set of live vari-
ables or live value numbers, resp. This set which is of size
O(n), n being again the program size, can be calculated via
a single pass through the program representation: Initially,
all program points are marked as unvisited and the variables
classified as interesting as well as those determining the
control flow or doing input/output operations are marked as
live. Then the following step is repeated until there are no
unvisited program points which are assignments to variables
marked live: For each still unvisited program point that con-
tains the assignment to a variable marked live, all variables
on the right-hand side of the assignment are marked live.
This algorithm needs quadratic time since in each step at
least one variable is marked live. Each steps needs linear
time. Since there are at most n steps, the algorithm needs
quadratic time. Note that, in practice, pathological cases in-
ducing quadratic time (or cubic time in case of the classical
DCE algorithm) only rarely show up.

4.3 Formalization of DCE in Isabelle/HOL

In our formalization of DCE on SSA form, we use the
formal semantics of SSA form as presented in Section 3 as
basis. Formally we distinguish four sets of value numbers
in our analysis:

• The set AP contains all value numbers in a given pro-
gram P .

• We provide the DCE-algorithm with a set IP of value
numbers whose values we are interested in (e.g. the
input/output operations).

• We have a set CP of control flow determining value
numbers (i.e. boolean variables that appear in if-
clauses).

• The set of live variables LP contains all value numbers
that may be necessary to compute CP and IP including
transitive dependencies and CP and IP itself.

With this information we are able to specify DCE on pro-
grams P . The function which performs DCE,

elim dead P :: program ⇒ nat set ⇒ program
takes a program and the set of live variables for this pro-
gram as determined by the analysis and returns a program
on which DCE has been performed. elim dead P calls

elim dead :: SSATree list ⇒ identifier set
⇒ SSATree list

which is defined as follows:
elim dead [] livevars = []
elim dead (tree # trees) livevars =

(if get id tree ∈ livevars then
elim dead trees livevars else
(tree # elim dead trees livevars))

for each basic block. This function simply eliminates
all assignments to non-live variables in a block by iterating
over the SSATree list of each block and throwing out every
tree whose root node does not calculate a live variable.
Note: This function is so simple because in our representa-
tion, every subtree of a tree in a tree list is contained in the
tree list again.

In more detail, our DCE algorithm for SSA form carries
out the following steps for a given Program P :

• Determine the set of value numbers AP , interesting
variables IP , control-flow determining value numbers
CP and all def-use chains within a single sweep over
the SSA representation.

• Calculate the set of live value numbers LP by taking
all “defs” of the reflexive, transitive closure of all def-
use chains that “use” value numbers from IP or CP .

• Perform Dead Code Elimination by sweeping through
the program representation and eliminating in each ba-
sic block all assignments to value numbers not in LP .

Typically, the variables in the final block are contained
in the set IP of interesting variables. But more generally,
interesting variables can also be other variables. In the suc-
ceeding section, we prove the correctness of this DCE algo-
rithm.

5 Correctness of DCE on SSA Form

In this section, we present our formal proof for the cor-
rectness of dead code elimination (DCE) on SSA form
within the theorem prover Isabelle/HOL. First, in Subsec-
tion 5.1, we describe our notion of program equivalence
which is based on bisimulation. Then, in Subsection 5.2,
we summarize our Isabelle/HOL correctness proof.

5

5.1. Semantical Equivalence via Bisimulation

Our principle idea is to regard two programs as seman-
tically equivalent if they denote the same sequence of ob-
servable states.

When looking at program equivalence, we are only inter-
ested in observable states. The fact that two programs are
regarded as semantically equivalent if they denote the same
sequence of observable states can be reformulated in a way
that the two programs have to bisimulate each other.

Definition 1 (Kripke Structures) A Kripke structure is a
five tuple (AP, S,R, S0, L) where AP is a set of atomic
propositions, S is a set of states, R is a transition relation,
S0 is the initial state and L is a labeling function mapping
states to sets of atomic propositions. �

Hence, a Kripke structure is equivalent to an annotated
state transition system.

Definition 2 (Bisimulation Relation [4]) Let M = (AP,
S, R, S0, L) and M ′ = (AP, S′, R′, S′

0, L
′) be two Kripke

structures with the same set of atomic propositions AP . A
relation B ⊆ S × S′ is a bisimulation relation between M
and M ′ if and only if for all s and s′, if B(s, s′) then the
following conditions hold:

1. L(s) = L′(s′)

2. For every state s1 such that R(s, s1) there is s′
1 such

that R′(s′, s′
1) and B(s1, s

′
1)

3. For every state s′
1 such that R(s′, s′

1) there is s1 such
that R′(s, s1) and B(s1, s

′
1) �

We can describe the semantics of a program as a struc-
ture M : Since the execution of a basic block is atomic, the
semantics of a program is specified by a state and a state
transition function. Each state consists of the number iden-
tifying the current basic block, its rank and a function map-
ping variables to their values. The state transition function
takes such a variable mapping, the number of the current ba-
sic block, and its rank and returns the next state i.e. a vari-
able mapping, the number of the succeeding basic block,
and its rank. Kripke structures are used as follows for the
specification of program semantics: The atomic proposi-
tions represent the variable value mappings, the numbers of
basic blocks, and the values of the rank. S is the set of states
reachable within the execution of the program M . R rep-
resents possible state transitions and the conditions under
which they appear. S0 is the initial state. L is a labeling
function mapping states to their observable variable map-
pings, rank, basic block id. Two programs are bisimilar if
there exists a bisimulation relation B such that the initial
states of both programs are within the relation.

If we describe the semantics of a program as a struc-
ture M and the semantics of another program as a structure
M ′, the bisimulation relation B is state equivalence, with
an equivalence criterion that we can choose freely: E.g. we
can restrict the variables that appear in the atomic propo-
sitions to live variables. Then L(s) = L′(s′) checks state
equivalence. With the notion of bisimulation and the re-
striction that we only require the values of live variables to
be equal in states that are in the bisimulation relation, we
have a formal criterion under which two programs show the
same behavior.

In our special case the requirements for a bisimulation
get even simpler: We regard two programs as semantically
equivalent iff:

• They start with equivalent initial states s and s′. This
is denoted s 'LP

s′ where LP is the set of live vari-
ables. By equivalence we mean that the observable
parts of the states must be the same, corresponding to
the requirement L(s) = L′(s′) in Definition 2.

• For two states s and s′ in the bisimulation relation, we
require that the succeeding states are equivalent again.
This is formalized in Isabelle/HOL as:
∀ s s′ .s 'LP

s′ −→ next s 'LP
next s′

where next returns the succeeding state by calling the
function process block with adequate arguments.

This notion of program equivalence captures very
elegantly the semantics of both terminating and non-
terminating programs. With its state abstraction, it is flexi-
ble enough to prove most compiler optimizations correct. If
we want to prove the correctness of a program optimization,
we have to show that optimized and unoptimized programs
denote the same sequence of observable states which is ex-
actly what a bisimulation proof does.

5.2 Formal Verification of Dead Code Elimination

In this subsection, we describe our proof that our
DCE algorithm on SSA form preserves the semantics of
programs. This proof has been completely conducted
within the theorem prover Isabelle/HOL. As stated in
Section 5.1, it is sufficient to show that the original program
and the transformed one (i.e. the one where dead code is
eliminated) bisimulate each other. We require that both
programs have the same initial states s0 and s′

0. To show
that the two programs bisimulate each other, we prove
that for each two equivalent states s and s′ and for every
basic block b in a program P with live variable set L, the
succeeding states (process block) will be equivalent as
well, either if dead code elimination (elim dead) has been
performed or not. The main theorem has the following
form:

6

∀ s s′ bP .“consistency assumptions“ −→
s 'LP

s′ −→
process block bP s

'LP

process block (elim dead bP LP) s

The consistency assumptions require that the program
and its states are valid with respect to our SSA formaliza-
tion:

1. For all trees calculating live variables, the trees that
calculate arguments/intermediate results must appear
somewhere in the program.

2. Each argument of a live φ-node must be contained in
the live variables set. (Remember that we call a node or
tree live if it or its root node calculate a live variable.)

3. Each subtree of a tree has to be contained in the
SSATree list of a basic block. Subtrees of trees that
calculate live variables have to be live again.

4. The basic blocks bP must be basic blocks of the pro-
gram P.

For example, the above second assumption that all argu-
ments of live φ-nodes have to be live again can be ensured
with the following predicate:

constdefs property2 ::
SSATree set ⇒ nat set ⇒ bool

property2 prog tree set L ==
∀ident ident′ pa val rank.
(PHI pa val ident) ∈ prog tree set ∧
get id(PHI pa val ident) = ident′ ∧ ident′ ∈ L
−→ (pa!rank ∈ L)

This predicate takes the set of all trees in a program
(prog tree set) and the set of live variables (L) and is only
true iff all live φ-node arguments are live again. (l!i denotes
the ith element in the list l.)

The proof of the main theorem requires the following
lemma where the most important steps of the whole proof
are performed:

lemma:
∀ vt wt vt′ wt′ treelist.
“consistency assumptions“ ∧
“treelist in basic block of P“ ∧
vt

.=L vt′ ∧ wt
.=L wt′

−→
(pic tree vals list(eval tree list

(eval phi list treelist vt rank)) wt)
.=L

(pic tree vals list(eval tree list
(eval phi list(elim dead treelist L) vt′ rank)) wt′)

It states that one can evaluate the φ functions of a given
treelist , evaluate the resulting trees, and finally collect the
calculated values. Either if the dead code elimination has
been performed or not, the collected values will be the same
if they belong to the set of live variables. The treelist is the
main ingredient of a basic block, cf. also Section 3. The as-
sumptions ensure that the treelist is a tree list of an arbitrary
basic block bP of the given program P .

The symbol “ .=L” denotes equality of tables of values
with respect to the set L of live variables. The vt, vt′, wt,
wt′ are tables of values used to assign φ node values and
to serve as an initial base for collecting when performing
pic tree vals. In practice the table of values vt resp. vt′

used to process φ node assignment and the table of values
wt resp. wt′ used to collect calculated values into will be
the same. This lemma is more general as it allows vt resp.
vt′ and wt resp. wt′ to be different. This general version
can be verified more easily than the less general version.

The proof of this lemma is done by induction over the
SSA tree list (treelist):

• Base Case: The SSA tree list is empty (treelist = []).
The proof goal is:
“assumptions“

−→
(pic tree vals list(eval tree list

(eval phi list [] vt rank)) wt)
.=L

(pic tree vals list(eval tree list
(eval phi list(elim dead [] L) vt′ rank)) wt′)

Since one cannot eliminate trees out of an empty tree
list, the following equation holds:

[] = (elim tree list[]L).
Isabelle solves this case automatically with the prede-
fined tactic simp.

• Induction Case: treelist = x#xs:
The proof goal is:
∀ vt vt′ wt wt′.
“assumptions“

−→
(pic tree vals list(eval tree list

(eval phi list xs vt rank)) wt)
.=L

(pic tree vals list(eval tree list
(eval phi list(elim dead xs L) vt′ rank)) wt′)

=⇒
∀ vt vt′ wt wt′.
“assumptions“

−→
(pic tree vals list(eval tree list

7

(eval phi list x#xs vt rank)) wt)
.=L

(pic tree vals list(eval tree list
(eval phi list(elim dead x#xs L) vt′ rank)) wt′)

We make a case distinction whether the node x is

– live: (x ∈ L) We show that x is not eliminated
by DCE (follows directly from the formalization)
and that x calculates the same value in both cases.
This requires another case distinction whether x
is:

∗ a single CONST Node: trivial to prove.
∗ a single PHI Node: easy to prove by using

consistency assumptions.
∗ a composed NODE Node: we show that

the value of the NODE is determined only
by live variables by using our consistency
assumptions.

– not live: (x /∈ L) we show that it does not change
the overall result, no matter if x is eliminated
from the treelist or not.

With the help of this lemma the proof of the main theo-
rem requires only basic proof steps and is quite easy in Is-
abelle/HOL.

With this proof we have ensured that our DCE algorithm
preserves the semantics of programs optimized by it. In
total our proof formalization within Isabelle/HOL has re-
quired 43 lemmata and theorems.

6. Implementing the Verified DCE Algorithm

For the implementation of our approach, we have em-
ployed the Scale compiler infrastructure [6] as basis. We
have chosen Scale because of its well-structured concep-
tion and detailed documentation as well as because of its
industrial-strength efficiency which has been demonstrated
by the Scale group with published result on the efficient
compilation of the complete SPEC 2000 benchmarks.

The architecture of Scale is depicted in Fig. 4. The fron-
tends yield abstract syntax tree representations of the source
files (C or Fortran code), which are in turn transformed into
the internal language Scribble, representing the control flow
graphs (CFG) in SSA form. On this representation, various
optimizations can be performed in various orders. Eventu-
ally a selected backend translates the CFGs into machine
code. Source-to-source translation is also supported.

We have realized our implementation of the verified
DCE algorithm as an additional optimization. The analy-
sis phase in Scale collects the def-use relations which are
used in the transformation phase to eliminate dead code. In

CFG in SSA form

Frontend

C Code

Backend

Optimizations

Object Code

Figure 4. Overview of the Scale Compiler

Scale, the direct def-use edges between value numbers are
represented explicitly in SSA form. Hence, to implement
our DCE algorithm, all that we needed to do was to take the
specified set of initially live value numbers (i.e. the union of
IP , the set of value numbers we are interested in, and CP ,
the set of value numbers determining the control flow) and
calculate the transitive closure of this set (with respect to the
def-use edges), which yields the set LP of live value num-
bers as result. Next, this set is used to perform the actual
transformation, namely to remove all assignments to dead
value numbers from the CFG.

The internal representation of Scale consists of chord
nodes, which constitute the instructions (i.e. assigning an
expression to a value number or conditional branching).
They are chained to each other according to the control flow.
Basic blocks are represented implicitly. The chord nodes
receive their data from trees of expression nodes, e.g. lit-
erals, operators, or value numbers. For our purpose, the
assign chord is most important as it assigns the result of an
expression to a given value number which in turn directly
influences the results of the live variables analysis.

Figure 5 shows the CFG after transformation to SSA
form for the following simple example:

void main() {
int a,b,c;
a=20;
b=12;
c=14;
if (a==10)

c=4;
a += c; }

The initial versions of the variables a, b, c are mapped
to the value numbers 1, 2, and 3, respectively. The
further versions of c are mapped to the value numbers
4 and 5, and the final version of a is mapped to the

8

Assign

Assign

Assign

Assign

201

122

3 14

Assign

5

4

φ

3

Assign

+6

51

1

20

44

i==10?

noyes

value number

(e.g. literal, operator)
expression node

data flow

control flow

Figure 5. CFG for the example

value number 6. We regard the final value of a as an
interesting value, besides the initial value of a influ-
ences the control flow. Thus we have the following sets:
AP = {1, 2, 3, 4, 5, 6}, IP = {6}, CP = {1}. From these
sets, we get in the first iteration the set LP = {1, 3, 4, 5, 6}.
Further iteration yields the same set, which constitutes
the solution. This leads to the elimination of the second
assignment, since b and its value number 2, resp., are dead.

Empirical Results: As a testcase for our implementation of
our verified version of Dead Code Elimination, we consid-
ered two commonly used software collections: The SPEC
2000 Benchmarks and the EDG C Frontend. The SPEC
2000 Benchmark is the state of the art corpus to check the
effectiveness of a wide variety of optimizations. The choice
for the EDG Frontend was motivated by the fact that it
is widely used in various compiler infrastructures (among
them Scale).

Corpus Files LOC Value Numbers
Σ Avg Dead

SPEC 2000 474 271k 214k 39.83 0.8%
EDG Frontend 185 465k 145k 29.68 0.2%

Table 1. Empirical Results

We compiled the complete projects and collected the fol-
lowing information (regarding one procedure at a time): We
determined how many value numbers are used (in total and
on average per procedure) and how many of these value
numbers are dead. As our algorithm does not deal with
pointer or array datatypes and since we wanted to exactly
implement this verified algorithm, we considered all values

involved in pointer or array operations as live.
The results of our algorithm are shown in table 1. Even

though we only optimized with a quite restricted algorithm
that does not optimize any pointer or array structures nor
memory accesses, we still get a noticeable improvement
of 0.8% and 0.2%, resp., of code that can safely be elimi-
nated. In the experiments, no additional optimizations were
performed. With these results, we have shown that veri-
fied optimization algorithms can be integrated into real-life
compiler systems and that they can effectively improve the
translated and optimized programs.

7. Related Work

The area of compiler validation and verification is an ac-
tive field of ongoing research. Typically one distinguishes
two notions of compiler correctness: the correctness of
compilation algorithms and the correctness of compiler im-
plementations. The first notion, the correctness of compi-
lation algorithms, deals with the question whether a given
algorithm preserves the semantics of the programs during
their compilation. The second notion considers the question
if a given compilation algorithm is correctly implemented.

The first work on the correctness of compilation algo-
rithms is [12] considering the correctness of a very simple
compiler for arithmetic expressions. Early work on com-
piler verification with the help of theorem provers is de-
scribed in [13]. Recent work has concentrated on transfor-
mations taking place in compiler frontends. [17] describes
the verification of the lexical analysis in Isabelle/HOL. The
formal verification of the translation from Java to Java byte
code and formal byte code verification was investigated in
[21, 11]. The german Verifix project [9] which was funded
by the German Science Foundation (DFG) developed meth-
ods to construct correct compilers which are as efficient as
typical commercial compilers. [7] describes Verifix results
and considers the verification of a compiler for a Lisp subset
in the theorem prover PVS.

The question of implementation correctness was investi-
gated in [3]. The Verifix project proposed the method of
program checking [10] which was independently investi-
gated in [19] as translation validation. The idea is to not
validate/verify the compiler implementation itself (which
would be much too expensive) but to only validate/verify
the compiler result. In many cases, this check is much eas-
ier. The approach of proof-carrying code [15] is weaker
than ours because it concentrates only on the verification of
necessary but not sufficient correctness criteria. A prever-
sion of the proof presented in this paper is described in [8]
which is again based on the work published in [1, 2].

There has also been research investigating the connec-
tions between various forms of program analysis, e.g. the
work showing that data flow analysis is model checking of

9

abstract interpretations [20]. In contrast to our approach,
this only considers abstractions of the program behavior
and, hence, only proves certain aspects of the semantics.

Concerning the validation and verification of program
optimizations (such as dead code elimination), the checker
approach seems to be particularly promising. Typically,
such an optimization requires an analysis beforehand that
determines the program parts which can safely be opti-
mized. In many cases, the analysis information can be ver-
ified much more easily than computed. It is subject of our
future work to implement a checker for the live variables
analysis as well as to investigate and verify further compiler
optimizations.

8. Conclusion and Future Work

We have formally specified and verified a well-known
compiler optimization algorithm, namely dead code elimi-
nation, within the theorem prover Isabelle/HOL. Dead code
elimination (DCE) is performed in almost all of today’s op-
timizing compilers. Based on this work, we have imple-
mented the DCE algorithm for the Scale compiler infra-
structure, yielding noticeable optimization results. Our
work shows that formal specification and verification of
real-life algorithms in theorem provers are possible and that
the verified algorithm can be implemented in a real-life
compiler system.

In future work we want to investigate further optimiza-
tions. In particular we want to exploit the given situation
that most optimizations require a preceding analysis whose
results are used subsequently to optimize programs. It
seems that such analysis results can be checked much more
easily than computed, thus preparing the ground for the sys-
tematic use of program checking in order to make sure that
not only the compiler algorithm but also its implementation
behaves correctly. We are planning to investigate if such
optimizing transformations and their checkers can be auto-
matically generated from a formal specification. This would
not only be important for the field of compiler verification
but also for the verification of general software transforma-
tions (as e.g. in software reengineering, when using design
patterns, in software composition and adaptation, in model
driven architectures (MDA) etc.) since these transforma-
tions work according to the same principles as the data flow
analyses one of them has been investigated in this paper.

Acknowledgement: Many thanks to Denise Dudek for
helpful discussions and cooperation on this research.

References

[1] J. O. Blech. Eine formale Semantik für SSA-
Zwischensprachen in Isabelle/HOL. Diplomarbeit (Master’s
Thesis), Universität Karlsruhe, 2004.

[2] J. O. Blech and S. Glesner. A Formal Correctness Proof
for Code Generation from SSA Form in Isabelle/HOL. In
Proc. 3. Arbeitstagung Programmiersprachen (ATPS),. LNI,
September 2004.

[3] L. M. Chirica and D. F. Martin. Toward Compiler Imple-
mentation Correctness Proofs. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):185–214, 1986.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. The MIT Press, 1999.

[5] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently Computing Static Single As-
signment Form and the Control Dependence Graph. ACM
Transactions on Programming Languages and Systems,
13(4):451–490, 1991.

[6] Scale Compiler Group, Department of Computer Science,
University of Massachusetts. Scale Home Page, 2005.
http://www-ali.cs.umass.edu/Scale/.

[7] A. Dold, F. W. von Henke, and W. Goerigk. A Completely
Verified Realistic Bootstrap Compiler. International Journal
of Foundations of Computer Science, 14(4):659–680, 2003.

[8] D. Dudek. Maschinelle Verifikation der Eliminierung toten
Codes in SSA-Darstellungen. Studienarbeit (Minor Thesis),
Universität Karlsruhe, 2005.

[9] S. Glesner, G. Goos, and W. Zimmermann. Verifix: Kon-
struktion und Architektur verifizierender Übersetzer (Veri-
fix: Construction and Architecture of Verifying Compilers).
it - Information Technology, 46:265–276, 2004.

[10] A. Heberle, T. Gaul, W. Goerigk, G. Goos, and W. Zimmer-
mann. Construction of Verified Compiler Front-Ends with
Program-Checking. In Perspectives of System Informatics,
PSI’99, 1999. Springer LNCS Vol. 1755.

[11] G. Klein and T. Nipkow. Verified Bytecode Verifiers. Theo-
retical Computer Science, 298:583–626, 2003.

[12] J. McCarthy and J. Painter. Correctness of a Compiler for
Arithmetic Expressions. In J. T. Schwartz, editor, Mathe-
matical Aspects of Computer Science, Proc. Symposia in Ap-
plied Mathematics, American Mathematical Society, 1967.

[13] J. S. Moore. A Mechanically Verified Language Implemen-
tation. J. Automated Reasoning, 5(4):461–492, 1989.

[14] S. S. Muchnick. Compiler Design and Implementation.
Morgan Kaufmann Publishers, Inc., 1997.

[15] G. C. Necula. Proof-Carrying Code. In Proc. 24th
ACM Symposium on Principles of Programming Languages
(POPL’97), 1997.

[16] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Pro-
gram Analysis. Springer, 1999.

[17] T. Nipkow. Verified Lexical Analysis. In Theorem Proving
in Higher Order Logics. Springer LNCS Vol. 1479, 1998.

[18] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic. Springer, Lecture
Notes in Computer Science, Vol. 2283, 2002.

[19] A. Pnueli, M. Siegel, and E. Singerman. Translation valida-
tion. In Proc. of Tools and Algorithms for the Construction
and Analysis of Systems, 1998. Springer LNCS Vol. 1384.

[20] D. Schmidt and B. Steffen. Data-flow analysis as model
checking of abstract interpretations. In Proc. 5th Static Anal-
ysis Symposium. Springer LNCS 1503, 1998.

[21] M. Strecker. Formal Verification of a Java Compiler in
Isabelle. In Proc. Conference on Automated Deduction
(CADE). Springer LNCS Vol. 2392, 2002.

10

