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Abstract

In this tool description paper we present a certifying code generation phase. Our code generation phase
takes intermediate language programs and translates them into MIPS assembler code. Each time our code
generation is invoked a proof script is emitted. This proof script is used as a certificate to guarantee the
correctness of the code generation run. It is checked in the Coq theorem prover. Once this has been
successfully done we can be sure that the code generation has been carried out correctly. Checking the
generated proof scripts has turned out to be a bottleneck of certifying compilation. This paper is based on
an implementation which uses – among other techniques – checker predicates to overcome this bottleneck.
These are predicates formalized in an executable way that can be easily evaluated by the Coq theorem
prover to speed up the certificate checking process.
This paper presents the certifying code generation phase introduced in [5] and focuses on its implementation.
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1 Overview

The technique of compilers that emit a certificate thereby guaranteeing the correct-
ness of distinct compilation runs certifying compilers (cp. Figure 1) is our method-
ology of choice to achieve a trustable code generation: For each compilation(-phase)
run source and target program are passed to a checker – the Coq theorem prover, in
our case – together with a certificate – the proof script – to check whether the com-
pilation run has been done correctly. The proof script is automatically generated
by the compiler and contains lists of tactic applications and other hints to guide
the theorem prover through the checking process.
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Fig. 1. Certifying Compiler

Certifying compilers have several advantages over certified compilers. These
are compilers where the compilation algorithm and its implementation have been
verified thereby guaranteeing correctness of compilation runs 3 .

• First, the issue of implementation correctness can be completely avoided.
• Second, the technique provides a clear interface between compiler producer and

user. No internal details of the compiler have to be given to the compiler user in
order to guarantee the correctness of a compiler run.

• Third, certifying compilers allow us to abstract from implementation details. This
frees us from reverifying the compiler once an aspect of implementation changes
slightly.

• Fourth, the generation of certificates is often easier than the verification of a
compilation algorithm. We do not have to consider very unlikely input. Thus,
we can give up completeness to make the verification task easier.

However, certificates have to be generated and checked for each compilation run.
In this tool description paper we present a certifying code generation phase.

Certificates are proof scripts for use with a theorem prover. We use the Coq [24]
theorem prover as proof checker. A higher order theorem prover like Coq as certifi-
cate checker has the following characteristics which we have used in our certifying
code generation phase:

• It allows us to formalize the operational semantics of the involved languages in a
convenient and human readable way.

• We have formalized and use in our correctness proofs an explicit criterion stating
correctness of compilation based on higher-order logic.

• Higher-order theorem provers provide human readable feedback in case a proof
fails. This makes it easy to debug the compiler or the proof script generator.

• Higher-order theorem provers are relatively slow compared to first-order theorem
provers or similar certificate checking tools.

Thus, our certifying code generation features explicit syntax and semantics defini-
tions of the involved languages. We have established a correctness criterion under
which we regard a compiler run as conducted correctly. This notion of correctness is
based on simulation between the involved programs. We require generated output
traces to be the same in both source and target program during their execution.

3 See [14] for a refined classification of certifying and certified compilers.
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This notion adequately captures the compilation correctness of terminating and
non-terminating programs.

We have proposed our methodology of certifying compilers in [22,8] and applied
it to the code generation phase in different implementations [6,2,5]. This paper
describes the structure and implementation – one focus is on the generation of the
proof scripts – of the certifying code generation described in [5]. The paper [5]
focuses on the semantics and compilation correctness definitions, the correctness
proofs and the process of proving compilation runs correct.

Related Approaches

The following approaches use a certifying methodology to guarantee correctness or
other properties of compilation.

• In the translation validation approach [21,1,27] the compiler is regarded as a
black box with at most minor instrumentation. For each compiler run, source
and target program are passed to a separate checking unit comprising an analyzer
generating proofs. These proofs are checked with a proof checker. A translation
validation approach and implementation for the GNU C compiler is described
in [18]. The analyzer generating the proofs in translation validation corresponds
to our certificate generator. In contrast to translation validation our approach
is based on a general higher-order proof assistant as for checking the certificates
and explicitly formalized semantics. Furthermore, we use more information to
generate the proof scripts from the compiler.

• A translation validation checker (called validator) has been formally verified
in [25]. Here – like in our work – correctness is based on formalized seman-
tics. The validator is used for verifying instruction scheduling. It is generated
out of a verified Coq specification.

• Credible compilation [23] is another approach for certifying compilers. Credible
compilation largely uses instrumentation of the compiler to generate proof scripts.
Like translation validation and in contrast to our work credible compilation is not
based on a explicitly formalized semantics.

• Proof carrying code [17] is a framework for guaranteeing that certain requirements
or properties of a compiled program are met, e.g. type safety or the absence of
stack overflows. These are necessary conditions that have to be fulfilled in a
correctly compiled program. In contrast to proof carrying code we require in
our work a comprehensive notion of compilation correctness. In [15] a compiler
generating certificates for the proof carrying code approach that guarantees that
target programs are type and memory safe is described. The clear separation
between the compilation infrastructure and the checkable certificate is realized in
our approach as well.

Certified compiler techniques are especially relevant to the logical framework of our
approach. In [14], the algorithms for a sophisticated multi-phase compiler back-end
are proved correct within the Coq theorem prover. To achieve a trusted implemen-
tation of the algorithm, it is exported directly from the theorem prover to program
code. A similar approach based on Isabelle/HOL is presented in [11]. The verifica-

3



J. O. Blech and B. Grégoire
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Fig. 2. Overview of Our Certifying Code Generation

tion of an optimization algorithm is described in [4]; it uses an explicit simulation
proof scheme for showing semantical equivalence. In [13] a specification language
is described for writing program transformations and their soundness properties.
The properties are verified by an automatic theorem prover. Important techniques
and formalisms for compiler result checkers, decomposition of compilers, notions
of semantical equivalence of source and target program as well as stack properties
were developed in the Verifix project [9,10,26] and in the ProCoS project [7]. The
development of a formally verified compiler for a C subset is part of the Verisoft
project focusing on pervasive formal verification of computer systems [12].

Overview

The rest of the paper is structured as follows: We give an overview on our certifying
code generation phase in Section 2. Its implementation focusing on the generation
of the proof scripts is described in 3. A performance evaluation is given in Section 4.
In Section 5 a conclusion and ideas for future work are presented.

2 Our Certifying Code Generation Phase

Our code generation phase compiles intermediate language code into MIPS [20] as-
sembler code. Our intermediate language consists of arithmetic expressions, (array-)
variable assignments, (un)conditional branches, a print statement, and (potentially
recursive) procedure call and return statements. Our MIPS language comprises
basic arithmetic operations, shift operations, and branch instructions. Instructions
for handling outputs and procedure calls are provided.

The overall architecture of our code generation phase is shown in Figure 2.
Intermediate language programs are passed to the actual code generator. It com-
prises the following steps in order to generate MIPS assembler code: In a first step
memory locations are determined for local and global variables and register alloca-
tion is done. We select MIPS instructions next and finally resolve jump targets. The
code generation emits some information on the programs that are compiled. These
are passed to the certificate generator which is well separated from the rest of the
compiler for generating the proof scripts. The information provided by the compiler
has to be computed anyway and comprises the variables used in the intermediate
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language code, a mapping of variables to memory locations and registers (variable
mapping), and a relation of intermediate language statements and corresponding
pieces of MIPS code (program counter relation). The proof scripts prove that the
MIPS code is a correct translation of the intermediate language code and are passed
to the theorem prover. In addition to performing the code and certificate generation
we emit theorem prover representations for intermediate language code and MIPS
code, which are given to the theorem prover, too. We allow the use of facts that
users have proved on the source code to ease some verification tasks or allow us to
abandon some checks like index out of bounds checks in variable accesses during the
checking process of the proof scripts. These facts are optional. Neither our code
generation or the correctness proofs do depend upon them. It may be advantageous
to keep the proof scripts so that third party users of the code can ensure themselves
of the correctness of a compilation. Furthermore, the formalization of our notion
of correctness is passed to the theorem prover before it starts to check the code
generation run.

Note, that the actual code generation implementation, but also the generation
of the proof scripts does not belong to the trusted computing base of certifying
compilation. This means if we generate false proof scripts we will not be able to
prove the corresponding code generation run correct. In this case we will discard
the results of the compilation run although – if just the proof generation mechanism
failed – it might have been correct.

Structure of the Proof Scripts

The proofs contained in the generated proof scripts can be structured into three
phases:

• Prerequisites and properties concerning the register and memory allocation are
ensured in a first phase. Most notably the injectivity of the mapping between
variables and memory/register location is proved. Thus, no two variables share
the same memory location at a distinct point of time.

• Our notion of compilation correctness is based on the equivalence of execution
traces of the involved programs. Thus, we partition possible execution steps into
a finite number of classes. We prove these classes of possible execution steps
correct in a second phase.

• Finally, we put everything together to achieve an overall correctness proof in a
third phase.

The time for checking the certificates is the bottleneck of certifying compilation. Our
code generation phase realizes some techniques to overcome this obstacle. Some of
the improvements are achieved by using a checker predicate in the first phase of
our generated proof scripts. This is a predicate formalized in an executable way
within the Coq theorem prover. Since we did prove our checker predicate equivalent
to a classical, non-executable specification we use it instead of the non-executable
specification in our generated proof scripts and gain speed improvements.
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3 Implementation

So far we have implemented two different versions of certifying code generation:

• An earlier Isabelle/HOL [19] based version of our certifying code generation phase
described in [6].

• The Coq version of our certifying code generation phase [5] that is described in this
paper. In addition to Coq as the theorem prover it features some instrumentation
with checker predicates and language extensions.

In this section we describe our implementation of a certificate generator for code
generation (some of this work is described in [3]). Furthermore, we describe the
other appliances for checking these certificates in the Coq theorem prover.

As pointed out in Section 2 the certificate generator uses information provided
by the compiler comprising sets of variables used in the intermediate language, the
variable mapping, and the program counter relation.

3.1 Program Representation Generation

Before generating the proof scripts and the theorem stating code generation run
correctness we generate theorem prover representations of intermediate language
and MIPS code. In addition, we generate representations of the variable sets, and
formalizations of the program counter relation, and variable mapping to be used
by the theorem prover. Apart from the theorem prover and hardware and oper-
ating system, the generation of the representations of intermediate language and
MIPS code are the only parts in a certified compiler implementation that have to
be trusted. For this reason it is important to make this part as simple as possible.
Intermediate language programs are represented within the compiler as abstract
datatypes. This kind of representation is easily ported to higher-order theorem
provers including Coq. Another important goal is to make the MIPS code formal-
ization look like MIPS assembler code to help people agree that the theorem prover
representation generation is indeed a very small gap in the verification chain.

The generation mechanisms for the program representations are implemented in
ML in a very simple, standard way. They write each statement or instruction one
after another into a theorem prover file and comprise less than 100 lines of code.

3.2 Certificate Generation Algorithm

The certificate generator generates the proof scripts based on the information pro-
vided by the compiler and the actual intermediate language and MIPS program
code.

3.2.1 Generating the Prerequisites
Since we use a simulation proof we have to generate a simulation relation. It is
established using the sets of variables of a program, the variable mapping, and the
program counter relation in a way that it demands the correspondence of variables
values’ to memory and registers and the correspondence of the program pieces from
intermediate and MIPS code. Next the certificate generator generates proof scripts
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to state and prove the properties of the variable mapping. In our current imple-
mentation we where able to simplify this process compared to the earlier Isabelle
implementation due to the use of checker predicates (cp. [5]) which encapsulate some
operations for which a non-checker predicate implementation whould have required
the generation of a more comprehensive proof script.

3.2.2 Generating the Proofs for the Second Phase
The proof scripts for the second phase make use of all the information the compiler
omits plus the intermediate language and MIPS program code. For each possible
execution step of an intermediate code statement and corresponding piece of MIPS
code we make a case distinction on the syntactical structure of the intermediate
language statement to be handled. We have different raw proof script templates
covering the different cases. Such a template has some blanks in it. The certificate
generator fills them up with information from the corresponding MIPS code and
from the compiler provided information.

Figure 3 shows a proof script template for an array assignment. It consists of
an intermediate language statement it has to be mapped against, an optional MIPS
code piece, a priority, and the proof script template that is completed to serve as the
generated proof script by filling up names of variables, facts, and case distinctions.

In the figure an array element is assigned the value of another array element
plus a second argument. This is shown in the intermediate language part of the
pattern (denoted IL) which consists of a term representing possible intermediate
language statements. The second argument is presumably a constant since rules
have priorities and more complicated cases have more distinct patterns they are
matched against and higher priorities. MemMap is a function – which is constant to
the whole program – realizing the variable mapping. Whereas varvals and mem are
variables representing stores for variables’ values and memory from the languages’
semantics. Different elements can be distinguished in the proof code:

• The evaluation of terms like in the first two lines.
• The split of a proof goal into sub goals (third line).
• The assertion and proving of some more basic facts (next five lines).
• The rewriting of a term by something equivalent (last line of the first sub-goal).
• The qed denotes a sub-goal that can be trivially finished. Usually some kind of

equation needs to be proved in the last step.

The parts in this proof template that need to be instantiated are the first four lines
in the assertion of the first sub-goal. The corresponding variable names have to be
put into locations. Furthermore, if we use user provided facts that prove whether a
memory location is a valid index or not some adaptation to the proof script needs to
be made. We have implemented a mechanism to reference and manage such facts in
the proof script generation. If we do not use user provided facts, we need to make a
case distinction on the range of the index. Thus, we need to make some adaptation
to the proof script, too. This is done by referencing the index variable’s name again.
A typical generated proof for such a step consists of roughly about 100 applications
of Coq tactics. There are as many step proofs as there are intermediate language
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IL:
ASSIGN AV (a,b,PLUS(ARVAR (c,d),e))

MIPS:
-

Priority: 10
ProofCode:
evaluate succeeding IL state representation
evaluate succeeding MIPS state representation
split goal into subgoals:
1. memory correspondence:

assert ( varvals (v, i) = mem (MemMap (v, i))) for all valid v and i
prove that a is a valid array
prove that c is a valid array
prove or use that b is a valid index
prove or use that d is a valid index

use injectivity + assertion to rewrite variable accesses with
memory accesses in variable store representation

qed
2. program counter correspondence:

look up whether program counters correspond to each other
qed

Fig. 3. Proof Script Template for an Array Assignment

statements in the intermediate language representation in a compilation run. Note,
that in the ML implementation of our certificate generator the proof templates
are encoded in a very compact form which outperforms even this pseudo proof code
representation in terms of lines of code. We encapsulate common sequences of tactic
applications in templates themselves.

3.2.3 Completing the Certificate Generation
The generation of the scripts for the third phase only needs information on the sets
of variables, the variable mapping and the program counter relation. The sets of
variables and the variable mapping are only needed to prove the correspondence of
the initial states.

The generation of the proof script proving the steps correct is by far the most
complicated process. The proposed methodology has the advantage that it can be
refined during the development process. We can start with a generic proof script for
a step of corresponding code pieces that may be able to prove some cases correct. We
go on refining this script depending on the statements, expressions, and operators
occurring in the intermediate language. We can go further on with the refinement
by looking at the compiler provided information and the MIPS code.

The part of our certifying code generation that emits the proof script consists
of several hundred lines of ML code.

3.3 Preparing and Using the Theorem Prover

The generated proof scripts and program representations are stored in separate files.
These are passed together with correctness criterion and language formalizations as
well as pre-proved lemmata and auxiliary formalizations to the theorem prover.
The proof scripts are processed one after each other by the theorem prover. The
generated proof scripts contain a distinct file stating that the correctness criterion
instantiated with intermediate language and MIPS program is fulfilled. This file is
processed last, since its correctness proofs depends on all the previous files. With the
successful processing of this last file the certificate checking is successfully finished.
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4 Results

A comparison between our two implementations [5] shows that the second imple-
mentation described here is much faster with respect to the certificate checking: We
are now able to verify code generation runs of several hundred lines of intermediate
language code within a few minutes. Comparable examples took days to verify with
the first implementation. The time for performing the compilation and generating
the proof scripts is negligible.

The table shows the time 4 it takes to prove the code generation of different
independently compiled procedures correct. It shows the number of variables
occurring in the procedure (counting array elements as single variables). The
length of the original intermediate program (IL length) as well as the length of the
generated MIPS code (TL length). In the last three columns the time it takes to
check the proofs for the three different phases (cp. Section 2) is shown.

program no. variables IL length TL length phase1 phase2 phase3

sort1 1008 16 67 3s 5s 1s

sort1a 2008 16 67 6s 5s 1s

sort1b 3008 16 67 10s 5s 1s

sort1c 4008 16 67 15s 5s 1s

sort1d 5008 16 67 22s 5s 1s

arith1 16 177 705 1s 38s 13s

arith2 18 353 1409 1s 1m 53s 46s

arrays1 2030 520 2059 5s 4m 25s 1m 34s

arrays2 2030 1030 4107 5s 14m 47s 6m 24s

The sort procedures sort arrays from 1000 (sort1) up to 5000 (sort1c) elements. The
arith procedures mostly contain arithmetic operations while the arrays procedures
perform operations on differently sized arrays. With procedures reaching several
hundred lines of code the time it takes to check the proofs is increasing faster than
linear. This is due to the larger data structures which have to be handled during
the proof process. Accesses to these structures grow linear with code size however
since the structures themselves are growing linear we end up with a time that is
growing quadratic. Accesses comprise the look up of statements, instructions, vari-
able, memory and program counter correspondences from list like data structures.
These look up operations were carried out in the earlier Isabelle/HOL 2005 based
implementation [6] mostly by unfolding the definition of a look up function and
matching axioms describing the semantics of such a function against the definition
and the data structure containing the data to be looked up. In Coq we are able
to execute look up function definitions directly in the Coq environment. Hence,
the quadratic time that these look-up operations add to the checking process has
only a major effect for very large procedures in Coq. These operations where the
bottleneck in our Isabelle implementation. The use of the checker predicate has
speeded the first phase up by a factor slightly larger than 100 compared to a Coq
implementation without a checker. Due to an artifact in the Coq implementation
the time the third phase takes grows larger than linear with the size of the program
code. In the presented table we used explicit proof terms for conducting the third

4 Experiments conducted on Intel Core 2 Duo machine with 2.16 GHz using one core and Coq Version 8.1.
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phase. We do have however a version with linear growing time in the third phase
which is slightly slower for the last line in the table. A Coq implementation without
checkers and explicit proof term use is described in [2].

5 Conclusion and Future Work

Our certifying code generation phase presented in this tool description paper demon-
strates that certifying techniques can be used successfully in compilers together with
higher order theorem provers as certificate checkers. Despite our good results with
the second implementation we are currently working on a third implementation:

• A Coq version of a certifying code generation phase and other compiler phases
that relies massively on checkers even in the second phase of our proof scripts.

We expect even more speed gains and a reduction on proof script generation com-
plexity once this version is finished.
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