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Abstract

Certifying compilation is a way to guarantee the correctness of compiler runs. A certifying compiler generates
for each run a proof that it has performed the compilation task correctly. The proof is checked in a separate
theorem prover. If the theorem prover is content with the proof, one can be sure that the compiler produced
correct code. Our notion of compilation correctness is based on a human readable formalization of simulation
of systems to ensure the same observable behavior of programs. We focus on certifying code generation
translating an intermediate language into assembler code. In previous work we found out that the time
spent for checking the proofs is the bottleneck of certifying compilation. We introduced the concept of
checker predicates. These are formalized in an executable way within a theorem prover to increase the
speed of distinct sub tasks of certificate checking. Once the checker predicates are proved correct we are
able to use them instead of traditional proving techniques within our theorem prover environment.
In this paper, we present a more elaborate checker predicate for proving the simulation between intermediate
and assembler programs correct. In the past this task has turned out to be the most complicated and time
consuming task in certificate checking. Our checker predicate uses internally a specially formalized semantics
representation of programs which is particularly suited for a fast conduction of proofs in the Coq theorem
prover. Using this checker predicate we are able to speed up the task of certificate checking considerably.

Keywords: Certifying Compilation, Translation Validation, Theorem Proving, Coq

1 Introduction

Guaranteeing correctness of code generation – apart from optimizations one of the
most error prone tasks in a compiler – is a major precondition for correct software.
We report on guaranteeing correct code generation using the certifying compilation
approach together with checker predicates.

To achieve a trustable code generation we use the certifying compilers technique.
From a piece of source code certifying compilers emit in addition to the target code
a certificate guaranteeing the correctness of distinct compilation runs (cf. Figure 1):
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Fig. 1. Certifying Compiler

For each compilation(-phase) run source and target program are passed to a checker
– the Coq theorem prover, in our case – together with a certificate – a Coq proof
script – to check whether the compilation run has been done correctly. The proof
script is automatically generated by the compiler and contains lists of tactic appli-
cations and other hints to guide the theorem prover through the checking process.

Certifying compilers have several advantages over certified compilers. These
are compilers where the compilation algorithm and its implementation have been
verified thereby guaranteeing correctness of compilation runs.
• First, the issue of implementation correctness can be completely avoided.
• Second, the technique provides a clear interface between compiler producer and

user. No internal details of the compiler have to be given to the compiler for
guaranteeing the correctness of a compiler run.

• Third, certifying compilers allow us to abstract from implementation details. This
frees us from reverifying the compiler once an aspect of implementation changes
slightly.

• Fourth, the generation of certificates is often easier than the verification of a
compilation algorithm. We do not have to consider very unlikely input. Thus,
we can give up completeness to make the verification task easier.

However, certificates have to be generated and checked for each compilation run.
The time it takes to automatically check certificates – i.e., run proof scripts –

in higher order theorem provers can be a bottleneck. Search and rewrite steps trig-
gered by the proof script can be a time consuming task, especially in the context of
large tool generated proof scripts. A possible solution is to use theorem provers with
less expressive powers which are often faster such as first order theorem provers.
However, for some transformations like program transformations a distinct formal-
ized correctness criterion and semantics is a very valuable feature to explain and
convince people about the benefits of ones verification work. Such human under-
standable specifications often require the use of higher order logic, thus higher order
theorem provers.

In this paper we further elaborate on checker predicates introduced in [3] and
add them to our existing certifying code generation framework [4,3]. Checker pred-
icates are small programs that are formalized within a higher order theorem prover
language. They can be used to check certain facts very fast in a higher order the-
orem prover, much faster than with traditional theorem prover techniques. In our
case we use checker predicates with the Coq theorem prover [22]. To profit from
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the benefits of higher order specifications we prove our checkers correct with re-
spect to a traditional specification. The checker predicate featured in this paper is
characterized via the following key concepts:
• Our checker predicate takes parts of program definitions and the compiled coun-

terparts and decides whether the transformations have been done correctly.
• It uses a special formalized checker semantics of the underlying program repre-

sentation. This semantics formalization is designed for a fast conduction of proofs
within a checker predicate.

• Our checker predicate internally computes a list of conditions that could not be
proved. This list has to be empty. A checker predicate may easily be modified,
such that it does not only return a boolean value, indicating whether the property
to be checked does indeed hold, but in case it can not decide whether the property
holds, returns this list of unproved conditions (of course strictly speaking we do
not have a predicate anymore once this modification is done). After the checker
predicate has finished its task this list may be handled with classical theorem
proving techniques.

• We prove our checker predicate and the checker semantics correct with respect to
our original semantics definition.

Checker predicates can be invoked out of generated proof scripts. It is important
to notice that since the checker predicates and their correctness proofs are done
in the theorem proving language, the trusted computing base is not enlarged. It
comprises the theorem prover, the generation of theorem prover representations of
programs (which is small and easy to understand), underlying operating system,
and the hardware. The part that generates the proof scripts is not part of the
trusted computing base, since false proof scripts can lead to the rejection of a
correct compilation, but will never prove a wrong compilation correct.

Guided by certifying code generation as application, this paper focuses on in-
troducing checker predicates as a proof technique for simulation steps in program
equivalence proofs in higher-order theorem provers. It presents the steps that have
to be carried out in order to use a checker predicate from a certifying compiler
writer’s point of view who wants to speed up the task of certificate checking. Due
to space constraints we omit the presentation of internal details of the Coq theorem
prover and their effect on our technique.

Overview

We discuss related work in Section 2. Checker predicates in general and their
integration into traditional theorem prover techniques are covered in Section 3.
The intermediate and MIPS language used for our simulation correctness checker
predicate are introduced in Section 4. It covers both, our original semantics and
the special checker semantics representations. Section 5 sketches a general scheme
for proving simulation between programs and how to use this to ensure compilation
correctness. Section 6 describes our checker predicate for checking simulation of
two programs, thereby ensuring their correct compilation. Finally, a conclusion is
drawn and future work is presented in Section 7.
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2 Related Work

Apart from our own work [4,19,6,3] on certifying compilers the following approaches
are most relevant to this paper:

In the translation validation approach [18,1,25] the compiler is regarded as a
black box with at most minor instrumentation. For each compiler run, source
and target program are passed to a separate checking unit comprising an analyzer
generating proofs. These proofs are checked with a proof checker. A translation
validation approach and implementation for the GNU C compiler is described in [17].
Like in translation validation we regard correctness for each single compiler run.
The analyzer generating the proofs corresponds to the certificate generation in our
certifying compiler. In contrast to translation validation our approach is based on
a general higher-order proof assistant as checking unit and explicitly formalized
semantics. Further on, we use more information to generate the proof scripts from
the compiler. A translation validation like certifying compiler framework mapping
program representations to an abstract domain for comparison is described in [21].

However, a translation validation checker (called validator) has been formally
verified in [23]. Here – like in our work – correctness is based on a formalized se-
mantics. The validator is used for verifying instruction scheduling. It is generated
out of a verified Coq specification. Like us they define an additional abstract se-
mantics similar to the approach described in this paper to ease the checking of a
program transformation. In contrast to them, our checker predicates are integrated
and used within generated proof scripts. This allows for even simpler checker pred-
icates, since in most scenarios it is sufficient to use checker predicates only for the
most time consuming tasks within a verification run. We believe that simplicity of
checkers and their correctness proof is a necessary precondition to make their use
more popular outside traditional theorem prover communities.

Credible compilation [20] is an approach for certifying compilers. Credible com-
pilation largely uses instrumentation of the compiler to generate proof scripts. Like
translation validation and in contrast to our work credible compilation is not based
on an explicitly formalized semantics.

Proof carrying code [16] is a framework for guaranteeing that certain require-
ments or properties of a compiled program are met, e.g., type safety or the absence
of stack overflows. While these are necessary conditions that have to be fulfilled
in a correctly compiled program we require in our work a comprehensive notion
of compilation correctness. In [15] a compiler generating certificates for the proof
carrying code approach that guarantees that target programs are type and memory
safe is described. The clear separation between the compilation infrastructure and
the checkable certificate is realized in our approach as well.

A large body of research has been done on certified compilers. Here, we can
only give an overview of the different areas of work. In [14], the algorithms for
a sophisticated multi-phase compiler back-end are proved correct within the Coq
theorem prover. To achieve a trusted implementation of the algorithm, it is exported
directly from the theorem prover to program code. A similar approach based on
Isabelle/HOL is presented in [11]. The verification of an optimization algorithm is
described in [2]; it uses an explicit simulation proof scheme for showing semantical
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equivalence. An important step in the direction of automating the generation of
correct program translation procedures is explained in [13]. A specification language
is described for writing program transformations and their soundness properties.
The properties are verified by an automatic theorem prover.

Important techniques and formalisms for compiler result checkers, decomposition
of compilers, notions of semantical equivalence of source and target program as well
as stack properties were developed in the Verifix project [7,8,24] and in the ProCoS
project [5]. The development of a formally verified compiler for a C subset is
part of the Verisoft project focussing on pervasive formal verification of computer
systems [12].

3 Checker Predicates

In this section we introduce a framework for checker predicates in general. It does
not only cover the checker predicate based on a checker semantics introduced in
this paper, but also a checker predicate for injectivity of functions introduced in [3].
We discuss how to handle them inside the theorem prover Coq. The Coq theorem
prover processes our certificates. The certificates consist of the following items:
• definitions, e.g., the definition of program representations and
• lemmata stating properties like compilation correctness followed by lists of tactic

applications that guide the theorem prover through the process of proving that
the stated properties do indeed hold.

While processing the list of tactic applications the theorem prover keeps track of
proof goals that still have to be proved correct. Tactic applications either split a
proof goal into several other proof goals, solve a proof goal, or rewrite one proof
goal by another.

During certificate checking we often arrive at proof goals that require showing
that some pieces of data c1, ..., cn – e.g., built from constructors of an inductive
datatype – fulfill some property D. This means that our theorem prover has to
prove a subgoal that looks like:

subgoal:
D(c1, ..., cn)

D is usually a generic property that needs to be fulfilled by a large class of
possible problems occurring in compilation run correctness proofs. It is formalized
in a declarative way that is relatively easy to understand for humans but hard
to decide automatically – it may even be part of the definition of compilation
correctness. The c1, ..., cn are different for each compilation run. One way to
prove this lemma correct is to generate and run a script consisting of some tactic
applications. The faster way is to use a checker predicate, which computes the
result. The underlying technique for these proofs via computations in Coq is also
called proof by reflection (cf. [9,10] on this).

In our case we may formalize a checker predicate E in an executable way that
checks whether the property formalized by D holds. Its correctness is guaranteed
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by proving the following lemma once and for all – thus this proof does not have to
be redone during certificate checking:

lemma:
∀x1, ..., xn.E(x1, ..., xn) −→ D(x1, ..., xn)

This correctness lemma can be applied via a classical implication rule each
time a subgoal as sketched above appears within a proof. It will transform the
sketched subgoal into another subgoal:

subgoal:
E(c1, ..., cn)

We can now use the executable formalized checker predicate instead of the
declarative correctness notion in our proof script to solve this subgoal, i.e., resolve
it to true. Thus, we have replaced a deductive proof by computation.

Note, that since this method is entirely realized within the description language
of the theorem prover, it does not enlarge the trusted computing base.

An Example Checker Predicate

A very simple example is a checker predicate for checking that a natural number is
divisible by two. The human readable specification might define this property as:

D(x) = ∃k. x = 2 · k k, x are natural numbers

This is not executable. A checker predicate for the same property might be
formalized in an executable way:

E(0) = True
E(1) = False
E(x) = E(x− 2) x ≥ 2

One might also think of a checker predicate that internally transforms the
natural number into a binary representation and checks the last digit. Such a
transformation of the input data is typical for our checker predicates.

4 The IL and MIPS Language

In this section we sketch the syntax and semantics of our intermediate language
(IL) and MIPS language 3 . Both intermediate and MIPS semantics are defined in
a small-step operational way. Hence definitions of syntax are done using abstract
datatypes. States are encoded as tuples and transition rules as state transition func-
tions. In addition to the syntax and semantics used in our program and correctness
definitions, we present checker semantics of IL and MIPS.

3 The acronym MIPS originally stands for “Microprocessor without Interlocked Pipeline Stages”.
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operand ::=
CONST val | VAR var | LOCVAR var |
ARRAYC (var × val) | ARRAYV (var × var)

loperand ::=
LVAR var | LLOCVAR var |
LARRAYC (var × val) | LARRAYV (var × var)

ilstatement ::=
ILPLUS (loperand × operand × operand) |
ILBRANCH1 (operand × loc) |
ILPRINT operand |
ILCALL2 (loperand × loc × operand × operand) |
ILRET1 operand |
...

Fig. 2. Intermediate Language Syntax (excerpt)

(termstate : flag, output : list val,

varvals : (var × val) ⇒ val, locvarsstack : list ((var ⇒ val) × loc), pc : loc)

Fig. 3. Intermediate Language States (Signature)

4.1 The Intermediate Language

An excerpt of the definition of the intermediate language’s syntax (cf. [3]) is depicted
in Figure 2. The language comprises arithmetic expressions, (array-)variable as-
signments, (un)conditional branches, a print statement for output, and (potentially
recursive) procedure call and return statements. Procedures are lists of statements.
Programs consist of one or more procedures. Intermediate language statements may
comprise operands appearing on the left (loperand) or right side of an assignment.
Such operands comprise local (with respect to a procedure) as well as global vari-
ables. Variables are of type var. val denotes a generic type for values, loc denotes
locations – positions in the list of statements.

The definition of a state in the intermediate language is show in Figure 3. It is
a tuple consisting of five components: a flag of termination indicating whether the
current procedure has terminated, called another procedure or encountered an error
state. Furthermore, the output occurred so far during the execution of the program
is represented as a list of values. The next component is a mapping from global
variables (including arrays) to values. The fourth component comprises a stack –
formalized as a list – for local variables (including call arguments) and program
counters. The latter ones serve as return addresses. Finally there is a program
counter indicating the next statement to be executed. The semantics is defined
via a state transition function ilnext taking one state and an intermediate language
procedure mapping them to the succeeding state.

4.2 The MIPS Language

Our formalized set of MIPS instructions (cf. [3]) comprises basic arithmetic opera-
tions, shift operations, and branch instructions. In addition instructions for basic
output, procedure calls and returns from a procedure are provided. As in the inter-
mediate language code for procedures is stored as lists of instructions. The definition
of a MIPS machine’s state is shown in Figure 4. As in the intermediate language
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(tltermstate : flag, tloutput : list val, regs : reg ⇒ val,mem : val ⇒ val, tlpc : loc)

Fig. 4. MIPS Code State Definition

absilstate =

(absval alist) × pid × absvarstore × ((pid × loc × var × absvarstore) alist) × absloc

Fig. 5. Abstract IL States

MIPSstate =

(absval’ alist) × absregstore × absmemstore × absloc

Fig. 6. Abstract MIPS State Definition

it consists of a flag indicating termination or other special occurrences and a list
of so far accumulated output. Instead of variable to value mappings it consists of
registers (type reg) and memory to value mappings. A program counter (type loc)
is part of the MIPS state, too.

The state transition function encapsulating the semantics is called tlnext. Our
semantics also needs a state transition function executing several instructions at a
time taking a state, a procedure definition, and the number of states to be executed:
tlnextn.

4.3 Checker Semantics for IL and MIPS

The semantics definition for IL and MIPS as introduced above is used in our spec-
ification of compilation correctness. We refer to these definitions as the original
semantics. In previous versions of our certifying code generation [4,3] we directly
proved simulation of programs on it. The checker predicate described in this pa-
per, however, uses special checker semantics: semantics definitions for the involved
languages that are defined solely for them to compare and reason about programs.
Compared to the original semantics the state definitions and the transition rules
are changed. Program syntax representation is not changed. Our checker predicate
uses these semantics to compute succeeding states rather than derive them from
declarative rules. Compared to the original semantics, values are represented in an
abstract way as abstract datatypes consisting of constructors representing read and
write accesses and arithmetic operations. This makes comparison between state
representations easier.

The biggest difference to the original semantics is that the definition of states
changes as shown in Figures 5 and 6. We use abstract store and value definitions
as shown in Figure 7 for IL and in Figure 8 for MIPS. An abstract store represents
variables’ values (absvarstore), memory (absmemstore) and register set (absregstore)
as terms. It consists of an initial constructor INIT, or an update of a value at a
primitive or array variable in the IL or an address or register in the MIPS language
of an abstract store. An abstract value (absval, absval’) can be a constant, an
operator combining abstract values, or some read access to an abstract store. alist
denotes an abstract list, that in addition to standard NIL and CONS constructors
features an abstract constructor for an arbitrary list. In addition to this, we have
abstract types for program counters (cf. definition of absloc) to indicate program
counters that depend upon the evaluation of an abstract value. This is needed
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absval::=
ABSCONST val | ABSPLUS absval absval | ABSMINUS absval absval | ABSMULT absval absval |
ABSLT absval absval | ABSLE absval absval |
VARGET var absvarstore | ACGET var absval absvarstore |
AVGET var var absvarstore

absvarstore ::=
INIT | VARUPD var absval absvarstore | ACUPD var absval absval absvarstore |
AVUPD var var absval absvarstore

absloc ::=

LOCKNOWN loc | LOCUNKNOWN absval loc loc

Fig. 7. Abstract Store and Value Definition for IL

absval’ ::=
ABSCONST val | ABSPLUS absval’ absval’ | ABSMINUS absval’ absval’ | ABSMULT absval’ absval’ |
ABSLT absval’ absval’ | ABSLE absval’ absval’ |
REGGET reg absregstore | MEMGET absval’ absmemstore

absregstore ::=
INIT | REGUPD reg absval’ absregstore

absmemstore ::=
INIT | MEMUPD absval’ absval’ absmemstore

Fig. 8. Abstract Store and Value Definition for MIPS

for conditional expressions. Comparing memory accesses from an original and a
transformed program are more easily and fast done automatically when using such
a definition.

Based on these definitions, the state transition functions for the checker seman-
tics ilnextC and tlnextnC compute checker semantics succeeding states.

4.4 Example: An Array Assignment

Consider Figure 9. It presents an array assignment evaluated by the checker seman-
tics. Both states in intermediate language and MIPS code have unspecified initial
variables’ values, memory, and register set. This INIT value corresponds to an uni-
versally quantified store in the original semantics. The succeeding states consist
of terms indicating the computations done during the step transition. Our checker
predicate compares these terms from both intermediate and MIPS code. They are
syntactically very similar: Both consist of an assignment to some kind of store. The
value assigned is represented in both cases as a term consisting of an ABSPLUS
constructor with comparable arguments. The checker predicate presented in this
paper is defined on such terms. All it has to derive is the look-up that the variable
’x’ corresponds to the memory location ABSCONST 1000 and ’y’ corresponds to
ABSCONST 1004. The checker predicate can do the whole checking process with-
out the need for a unification at any point. Moreover, the checker predicate may
need to rewrite the terms serving as its arguments but it never needs to rewrite any
proof goals within the theorem prover logic.
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Intermediate Language Code

ASSIGN V ’x’ (PLUS (VAR ’y’) (CONST 1))

MIPS Code

LOAD a10 1004 0

ADDI a10 a10 1

STORE a10 1000 0

Intermediate Language’s and MIPS States before the Step

(ILoutp,pid,INIT,stack,100)

(MIPSoutp,INIT,INIT,400)

Intermediate Language’s and MIPS States after the Step

(ILoutp,pid,

VARUPD x (ABSPLUS (VARGET y INIT) (ABSCONST 1)) INIT,stack,LOCKNOWN 101)

(MIPSoutp, ...,

MEMUPD (ABSCONST 1000) (ABSPLUS (MEMGET (ABSCONST 1004) INIT)

(ABSCONST 1)) INIT, LOCKNOWN 403)

Fig. 9. An Assignment to a Variable Using the Checker Semantics

Lemma ilabstract correct :

∀ gvals lvals output . ∀ P as s as’ s’.

interp ilstate (gvals,lvals,output,as) = Some s =⇒
ilnext (P,s) = s’ =⇒
ilnextC (P,as) = Some as’ =⇒
interp ilstate (gvals,lvals,output,as’) = Some s’

Fig. 10. Correctness of Checker Semantics (IL)

4.5 Correctness of the Checker Semantics

Correctness of checker semantics is stated with respect to the original semantics
definitions. The correctness of the checker intermediate language semantics is for-
mulated via the lemma shown in Figure 10. Assuming that an IL checker semantics
state as has an original semantics representation s we have to derive that the suc-
ceeding abstract state as’ when interpreted in an original semantics state representa-
tion equals the succeeding original semantics state s’. Note, that the interpretation
function for intermediate checker semantics states interp ilstate is defined to return
an option datatype. This is especially relevant since some state transitions in the
checker semantics may not be performed if the original state has an unknown pro-
gram counter. In these cases None is returned. gvals, lvals and output are universally
quantified variables used for interpreting a checker semantics state. They provide
arbitrary interpretation values for the INIT constructors in stores.

Figure 11 shows the lemma stating correctness of the checker MIPS semantics.
P is a piece of MIPS code. The lemma makes use of the interp tlstate function for
interpreting abstract MIPS states. mvals, rvals, and output provide arbitrary values
of memory, register set and output to the interpretation function. It is very similar
to the correctness lemma for the intermediate language. The only major difference
is the extra n argument since we deal with state transition functions tlnextn and
tlnextnC that perform n consecutive steps.
We have proved the correctness of our checker semantics representations in Coq.
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Lemma tlabstract correct :

∀ mvals rvals output . ∀ P as s as’ s’ n.

interp tlstate (mvals,rvals,output,as) = Some s =⇒
tlnextn (P,s,n) = s’ =⇒
tlnextnC (P,as,n) = Some as’ =⇒
interp tlstate (mvals,rvals,output,as’) = Some s’

Fig. 11. Correctness of Checker Semantics (MIPS)

5 Correctness of Code Generation via Simulation

In this section we present our simulation based notion of compilation correctness
and discuss how the certificate guides through the process of proving compilation
runs automatically correct in a theorem prover (cf. [4,3]).

To verify that a transformation has been conducted correctly one needs to for-
malize a notion of correctness. The original and transformed programs shall se-
mantical correspond to each other. We regard two programs as semantically corre-
sponding if they behave the same. This means they generate the same output values
in the same order under the same input values. For simplicity reasons, we regard
inputs as fixed in this paper. For the conduction of correctness proofs however, it
is much more useful to use a more restricted criterion that implies the equality of
observable traces.

Formally we require the intermediate language program and the MIPS program
to be in a (weak) simulation. The corresponding simulation relation – comparing
an intermediate language state with a MIPS state – has to ensure the equivalence
of output values of related states:
• The simulation relation has to hold for the initial states.
• For two intermediate and MIPS states in the relation, if there is a next inter-

mediate operation, there has to be one or more MIPS instructions such that the
succeeding states are in the simulation relation again.

In addition to equivalence of outputs it is convenient to require further constraints
within the simulation relation like:
• IL variables’ values have to be mapped to MIPS memory locations as specified

by a distinct mapping relation: the variable mapping,
• program counters in IL and MIPS have to correspond to each other as indicated

by a program counter relation,
• the target code procedure may only write to the memory heap (global variables

in the intermediate language) or to its own stack frame (local variables in the
intermediate language),

• parameters during procedure calls have to be passed at distinct locations on the
stack as are return values from procedure calls.
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Proving Simulation

The first task to verify the correctness of a code generation run is establishing a
simulation relation for the concrete code generation run based on information pro-
vided by the compiler. We prove that it indeed implies correctness, i.e., it ensures
the same output traces (cf. first two items of the code generation correctness crite-
rion). Next we prove that the initial states of both programs are in the simulation
relation.

For showing that for each two states in the simulation relation the succeeding
states are in the relation again, we make a case distinction on possible locations in
the intermediate language code (program counter). An intermediate language state
being in a simulation relation with some MIPS state requires that it must point
to some intermediate language statement. In addition, the MIPS program counter
has to point to a corresponding MIPS program point and the program counter
relation has to indicate the exact number of corresponding MIPS instructions to
the intermediate language instruction. We make a case distinction on all possible
intermediate language program points. Hence we split intermediate language and
MIPS code into corresponding program slices of IL statements and MIPS instruc-
tions which have to semantically correspond to each other (cf. Figure 9 for an
example of a pair of slices). For each corresponding pair of slices we prove in the
theorem prover a separate lemma that they compute equivalent values, store them
at equivalent locations, reach equivalent program points, call equivalent procedures
with equivalent parameters, return equivalent values or produce equivalent outputs.
Of course a typical MIPS program may compute a lot of intermediate values that do
not appear in the intermediate language. We handle this by requiring only values
of variables appearing in the intermediate language procedure and the appropriate
memory locations to correspond to each other.

To prove such a single step of a pair of program slices correct we require a number
of prerequisites. Various properties concerning the mapping from variables to mem-
ory have to be ensured. Crucial to our proofs is the fact that the mapping between
variables and memory is injective: If we change a variable and a corresponding
memory cell no other variable’s memory cell is affected.

The case distinction on the intermediate languages program points realizing
the program slices is implemented by different lemmata: one for each program
point/pair of slices. We call such a lemma a step lemma. Finally, it is all put
together in a last phase proving the compilation correctness for an intermediate
and a MIPS program.

Proving step lemmata correct lifts the dynamic nature of trace based semantics
to a static view enhancing the possibility to reason about possibly infinite state
systems in a theorem prover. Compared to the original semantics, where undefined
parts of states have to be specified as free variables, our checker semantics can
represent them using abstract datatypes without using free variables.
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6 A Checker Predicate for Simulation Steps

In this section we present our checker predicate for proving simulation steps correct.
The most important part of proving compiler transformations correct with respect
to a simulation based notion of correctness is the proof of the simulation steps. We
can not explicitly investigate all possible steps, since there may be infinite many
ones in case of non-terminating programs. For this reason we look at distinct classes
of steps and prove that all steps in the class respect the simulation requirements.
Typically a class of steps is defined by a pair of program slices (cf. Section 5)
encapsulating all steps that may be performed from a given program point. By
looking at all program points we achieve full coverage.

For verifying a concrete compiler transformation a checker predicate takes an
original program, the transformed program, the simulation relation, and a pair of
program points from the original and transformed program. It decides whether the
instructions involved in the step have been transformed correctly. Once we have
checked every class of simulation steps and proved the inclusion of the initial states
in the simulation relation we can conclude the correctness of the whole program
transformation.

To verify that a pair of program slices realizing a step is correct the checker
predicate performs the following tasks:
• It takes the symbolic representations of the states before the steps and computes

the symbolic representations for the states after the step.
• It compares the resulting symbolic state representations and checks whether they

are in the simulation relation.

The checker-semantics allows for very fast checks of step correctness. However,
our approach requires us to prove the following items:
• We have to prove the checker-semantics correct with respect to the original se-

mantics – which is usually defined in a more declarative way.
• We have to prove the checker predicate correct. This means, it has to ensure the

requirements of the simulation relation.

Once this is done we gain a very fast and flexible tool that guarantees the correctness
of simulation steps.

The lemma stating the correctness of the checker is not only used to convince
users that the checker may be trusted. We use it within Coq to rewrite proof
goals demanding the original, more declarative notion of correctness into proof goals
demanding the application of a checker. Once this is done we use Coq’s vm compute
tactic to execute the checker and prove the proof goal.

6.1 Definition of the Simulation Step Checker Predicate

The following describes the implementation of our step correctness checker predicate
checker shown in Figure 12. It uses a helper function checker step. This helper
function computes a list of conditions that need to be true in order to regard a
symbolic execution step as correct.

First based on given program counters underspecified initial states are gener-
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checker step (MemMap,Vars,PCRel,PIL,PMIPS ,pcIL,pcMIPS) =
let ais := mk il rawstate (pcIL) in
let ats := mk tl rawstate (pcMIPS) in
match ilnextC (PIL,ais) with

| Some (aoutp,pid,agvs,(rpid,raddr,rvar,alvs)::stack,apc) =>
match tlnextnC (PMIPS ,ats,n) with

| Some (tlaoutp,aregs,amem,tlapc) =>
compmem (MemMap,Vars,agvs,alvs,amem,aregs) ++
comppc (MemMap,Vars,PCRel,apc,tlapc) ++
compoutp (MemMap,Vars,aoutp,tloutp)

| None => false :: nil
end
| None => false::nil

end.

checker(MemMap,Vars,PCRel,PIL,PMIPS ,pcIL,pcMIPS) ≡
checker step(MemMap,Vars,PCRel,PIL,PMIPS ,pcIL,pcMIPS) = []

Fig. 12. The checker Checker Predicate

ated using the functions mk il rawstate and mk tl rawstate. They represent states
where variables and memory can contain any value, as long as IL variables and
MIPS memory fulfill the simulation relation properties. Using these states the suc-
ceeding abstract state representations are computed. These are compared using
the functions compmem, comppc, and compoutp. The function compmem compares
abstract store representations for global and local variables, registers and memory.
Comparing program counters is done by comppc. Output lists are handled by com-
poutp. These functions are defined inductively on the term structure of the terms
representing abstract stores and program counters. compoutput only regards the
last value in the list – if any is computed. Thereby a list of conditions that these
functions cannot prove on their own is generated (concatenated by ++). Usually
this list is empty. checker only checks whether the list is empty or not. If an error
occurs a constant false is added to the list of conditions that need to be verified.

6.2 Checker Predicate Correctness

Figure 13 shows our correctness lemma for our checker predicate: checker. For
all possible values of the compiler provided information: MemMap, Vars, PCRel,
an intermediate language program PIL and MIPS PMIPS , as well as two program
counters from the states sIL, sMIPS and the number of steps taken in the MIPS
language n the following correctness property has to hold: if the checker is content,
some additional properties that do not belong to a step lemma are fulfilled (e.g.,
injectivity, alignment [3]), and the state correspondence captured in the simulation
relation H as created by createsimulation holds for the two states before the step,
than the state correspondence holds after the step, too. The correctness proof
is done by unfolding the checker definition. The main step of the proof is the
rewriting of the computation and comparison of the checker semantics states by
their concrete counterparts within the checker predicate. This is done by using the
checker semantics correctness proofs.

6.3 Using the Correctness Proof

The first step in proving simulation of programs as required by our notion of
code generation correctness consists in a case distinction of possible program
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Lemma :

∀ MemMap Vars PCRel PIL PMIPS sIL sMIPS n.

checker (MemMap,Vars,PCRel,PIL,PMIPS ,get pc (sIL),get pc’ (sMIPS),n) =⇒
“additional properties on MemMap, Vars, PIL, and PMIPS” =⇒
“H ensures output equivalence” =⇒
H (sIL,sMIPS) =⇒
H (ilnext (PIL,sIL),tlnextn (PMIPS ,sMIPS ,n))

Fig. 13. Correctness of the checker Checker Predicate

counters. Thus, we have to prove subgoals realizing step lemmata of the following
form (one for each possible program counter in the intermediate language and its
corresponding MIPS counterpart):

H (sIL,sMIPS) =⇒
H (ilnext (PIL,sIL),tlnextn (PMIPS ,sMIPS ,n))

We can apply our checker predicate correctness proof to this subgoal via an
implication rule. This results in the following subgoals:

(i) checker (MemMap,Vars,PCRel,PIL,PMIPS ,get pc (sIL),get pc’ (sMIPS),n)

(ii) “additional properties on MemMap, Vars, PIL, and PMIPS”

(iii) “H ensures output equivalence”

The first goal can be computed in a fast way by evaluating the checker predicate
with the Coq tactic vm compute. The properties of the variable mapping are proved
once and for all for a program. The last subgoal is trivially true, since we use a
scheme for constructing H that automatically ensures output equivalence.

6.4 Evaluation

We have implemented and proved the presented checker predicate correct. It checks
the correctness of simulation steps appearing in concrete programs. The checker
predicate is realized and proved correct within Coq. Based on our original seman-
tics for intermediate language and MIPS code we have established checker semantics
for both languages. Some parts in our specification are generic to both semantics
formalisms. This made the process of proving the checker semantics correct with
respect to the original semantics more easy. The checker predicate itself consists
of less than 100 lines of Coq specifications. Most parts of it do transformations
on the involved abstract store representations to make intermediate language and
MIPS states comparable. The correctness proof of the checker contains auxiliary
lemmata and definitions. It consists of a few hundred lines of Coq proof scripts
written in a compact form. Most of the verification work is spent with proving
the transformations conducted in the checker correct. Our checker predicate can
verify programs, consisting of various arithmetic operations, array assignments, and
conditional branches. So far we did not integrate function calls and returns into
our checker. However, most parts of programs using function call and returns can
be handled by our checker predicate, too. Only the step lemmata encapsulating
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function call and returns must be verified using our traditional proof script gen-
eration based technique [3]. Our checker predicate can verify programs and their
transformations consisting of several hundred lines of intermediate language code
within a few seconds – thus, provide a solution for the biggest bottleneck in certi-
fying code generation [3]. The verification of code generation for several thousands
lines of intermediate language code, can be done within several minutes. The ver-
ification time grows non-linear for larger programs, due to an artifact in the Coq
implementation.

7 Conclusion and Future Work

We have defined the notion of checker predicates and presented a general way to
use them to speed the process of proving Coq scripts up. We presented a checker
predicate for checking that simulation steps in a compilation run correctness proof
hold. It uses a special checker semantics to conduct computations in a fast way.
We proved our checker predicate correct with respect to the original correctness
definition of simulation steps. The correctness proof – which is done once and
for all and is reused in each certificate checking – is entirely carried out in Coq.
Our checker predicate handles the most complicated and time consuming parts of
certified code generation. Thus, it speeds the automatic verification of certificates
considerably up and simplifies the certificate generation part of the compiler.

Currently we are focussing on certificate generation for the results of verification
tools like model checkers. For this application, we are developing a checker predicate
used for checking invariants of an asynchronous, component-based language based
on transition systems in the Coq theorem prover. The challenges occurring here are
very similar to compiler code generation: We use a specialized checker semantics
and reason about transition steps of the involved systems. A related long term goal
is a certifying code generation for this language.

Apart from this, we believe, that checker predicates can be useful for all phases
of certifying compilation and proof carrying code scenarios, where a higher-order
theorem prover is used as a proof checker.
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