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Abstract. We describe a tool framework for certifying properties of sequential
function chart (SFC) based system specifications: CERTPLC. CERTPLC handles
programmable logic controller (PLC) descriptions provided in the SFC language
of the IEC 61131–3 standard. It provides routines to certify properties of systems
by delivering an independently checkable formal system description and proof
(called certificate) for the desired properties. We focus on properties that can be
described as inductive invariants. System descriptions and certificates are gener-
ated and handled using the COQ proof assistant. Our tool framework is used to
provide supporting evidence for the safety of embedded systems in the industrial
automation domain to third-party authorities. In this paper we focus on the tool’s
architecture, requirements and implementation aspects.

1 Introduction

Discovering and validating properties of safety critical embedded systems has been
a research topic during the last decades. Automatic verification tools based on model
checking and static analysis techniques are used in various software and hardware de-
velopment projects. Automatic verification tools are successfully applied to increase
confidence in the system design. However, even the verdicts about systems provided
by automatic verification tools may be erroneous, since automatic verification tools
are likely to contain errors themselves: they use sophisticated algorithms, resulting in
complicated implementations. Due to this high level of complexity of their algorithms
and the underlying theory, they are hardly ever considered as trustable by certification
authorities.

In contrast to general purpose higher-order theorem provers, an automatic verifica-
tion tool possesses a high degree of automation, but it does not achieve the same level of
trustability and is usually specialized towards a problem-specific domain. Higher-order
theorem provers, like COQ [13], are based on a few deduction rules and come with very
small, simple, and trusted proof checkers which are based on type checking algorithms
and provide a high level of confidence.

For this reason we provide a verification / certification environment based on higher-
order theorem provers. It may be used to re-check properties that have been discovered
by automatic verification tools or stated by humans in the first place. If such a check
is run successfully in the higher-order theorem prover one lifts these properties to the
high level of confidence provided by the higher-order theorem prover.



Based on our ideas on certification of properties for a modeling language [8] and
our work on a certificate generating compiler [5] we present a tool framework CERT-
PLC which emits certificates and allows reasoning about properties of models for pro-
grammable logic controller (PLC) provided in the sequential function chart (SFC) lan-
guage of the IEC 61131–3 standard [17]. Our work comprises a generation mechanism
for COQ representations of our models – a kind of compiler that emits COQ readable
files for given models. In addition to this, it comprises other related proof generation
mechanisms and a framework for supporting proofs that properties of these models do
hold. Our COQ certificates – system description, properties and their proofs – are based
on an explicit semantics definition of the SFC language, thereby ensuring that correct-
ness conditions hold for the system described in the certificate.

The COQ environment has been accepted by French governmental authorities in a
certification to the highest level of assurance of the Common Criteria for Security [12].

In this paper we focus on the following aspects of the CERTPLC tool framework:
– tool architecture,
– proof generation and the construction of certificates,
– and additional implementation issues.

Furthermore, we give an overview on usage scenarios, the formalized SFC semantics
and present and discuss general characteristics of the methodology. A long version of
this paper is available as a report [4]. In the current state of implementation the tool
framework is applicable for standard PLC described using SFC. An exemplary usage
with another language: function block diagrams (FBD) is also described to illustrate the
flexibility of the described framework. The support of other languages and a detailed
investigation of case studies are not subjects of this paper.

Our certification framework is mostly characterized by:
– The usage of an explicit semantics for properties and systems. This is human

readable, an important feature to convince certification authorities.
– The focus on the PLC domain and the integration in an existing tool.
– A high degree of automation – compared to other work using higher-order theorem

provers, that still allows human interaction.
– The integration into an existing tool for graphically designing PLC: EasyLab [2].

The high expressiveness of our semantics framework is largely facilitated by the usage
of a higher-order theorem prover.

1.1 Certification

In the context of this paper we define

– certification as the process of establishing a certificate.
– automatic certification is the process of establishing a certificate automatically.
– In our work certificates comprise a formal description of a system, a formal de-

scription of a desired property and a proof description (a proof script or a proof
term) that this property does hold.

– certificate checking is the process of checking that the property does indeed hold
for the formal system description in the certificate. This checking is done by using
the proof description in the certificate.



1.2 The Trusted Computing Base in Certification

Apart from components like operating system and hardware, in our certification ap-
proach, the trusted computing base (TCB) comprises the certificate checker (the core
of the COQ theorem prover) and the program that generates formal PLC descriptions
for COQ automatically. The check that these descriptions indeed represent the original
PLC can be done manually. One goal for the generation is human readability to make
such a check feasible at least for experienced users. Not part of the TCB are the proof
description and its generation mechanism. The proof description only provides hints
to the certificate checker. In case of faulty proof descriptions a valid property might
not be accepted by a certificate checker. It can never occur that a faulty property is ac-
cepted even if wrong proof descriptions are used. Thus, our approach is sound, but not
necessarily complete.

1.3 Related Work

Notable milestones on frameworks to certify properties of systems comprise proof car-
rying code [16]. Proofs for program-specific properties are generated during the compi-
lation of these programs. These are used to certify that these properties do indeed hold
for the generated code. Thus, users can execute the certified code and have, e.g., some
safety guarantees. At least two problems have been identified:

1. Properties have to be formalized with respect to some kind of semantics. This is
sometimes just implicitly defined.

2. Proof checkers can grow to a large size. Nevertheless, they have to be trusted.

The problem of trustable proof checkers is addressed in foundational proof carrying
code [1, 22]. Here the trusted computing base is reduced by using relatively small proof
checkers. The problem of providing a proof carrying code approach with respect to a
mathematically founded semantics is addressed in [20]. In previous work we have also
addressed the problem of establishing a formal semantics for related scenarios [5, 8].

Formal treatment of PLC and the IEC 61131–3 standard has been discussed by a
larger number of authors before. Formalization work on the semantics of the Sequential
Function Charts is given in [10, 11]. This work was a starting point for our formalization
of SFC semantics.

The paper [3] considers the SFC language, too. Untimed SFC models are trans-
formed into the input language of the Cadence SMV tool. Timed SFC models are trans-
formed into timed automata. These can be analyzed by the Uppaal tool.

Another language of the IEC 61131–3 standard used for specifying PLC are func-
tion block diagrams (FBD). Work in the formal treatment of FBD can be found in [23].
The FBD programs are checked using a model-checking approach. A COQ formaliza-
tion of instruction lists (IL) – also part of the IEC 61131–3 standard – is presented
in [18].

The approach presented in [21] regards a translation from the IL language to an
intermediate representation (SystemC). A SAT instance is generated out of this repre-
sentation. The correctness of an implementation is guaranteed by equivalence checking
with the specification model.



1.4 Overview

We present the IEC 61131–3 standard, including the SFC language and its semantics
as formalized in COQ in Section 2. The tool environment in which our CERTPLC tool
framework is supposed to be used and an overview about the tool’s architecture is de-
scribed in Section 3. The CERTPLC ingredients and their interactions are described in
some detail in Section 4. Typical proofs that can either be generated or hand-written
by using our semantics are discussed in Section 5. Finally, an implementation overview
and a short evaluation is given in Section 6. A conclusion is featured in Section 7.

2 IEC 61131–3, SFC, Semantics and Certification

In this section we sketch the semantics of sequential function charts (SFC). The de-
scription in this section is based on our earlier work [6] which is influenced by the
descriptions in [10, 11]. Furthermore, we present some work on the integration of func-
tion block diagrams (FBD) into our tool framework.

2.1 The SFC Language

Our tool framework works with PLC described in the SFC language. The SFC language
is a graphical language for modeling PLC. It is part of the IEC 61131–3 standard and
frequently used together with other languages of this standard. In such a case, SFC are
used to describe the overall control flow structure of a system. The standard is mainly
used in the development of embedded systems in the industrial automation domain.

The standard leaves a few semantical aspects open to the implementation of the PLC
modeling and code generation tool. In cases where the semantics is not well defined by
the standard we have adapted our tool to be compatible with the EasyLab [2] tool.

Syntax Syntactically we represent an SFC as a tuple (S, S0, T, A, F, V,ValV ). It com-
prises a set of steps S and a set of transitions T between them. A step is a system
location which may either be active or inactive in an actual system state, it can be as-
sociated with SFC action blocks from a set A. These perform sets of operations and
can be regarded as functors that update functions representing memory. The mapping
of steps to sets of action blocks is done by the function F . Memory is represented by a
function from a set of variables V to a set of their possible values ValV . S0 ⊆ S is the
set of initially active steps.

A transition is a tuple (Sin, g, Sout). It features a set of states that have to be enabled
Sin ⊆ S in order to take the transition. It features a guard g that has to be evaluated
to true for the given system state. g is a function from system memory to a truth value
– in COQ we formalize this as a function to the Prop datatype. A transition may have
multiple successor steps Sout ⊆ S. The types ValV that are formalized in our SFC
language comprise different integer types and boolean values.

Figure 1 shows an example SFC structure realizing a loop with a conditional branch.
The execution starts with an initialization step Init. After it has been processed control
may pass to either Step2 or to a step Return. Once Step2 has been processed control is
passed to Init again.



Fig. 1: A loop in the SFC language

Please note, that in addition to loops and branches SFC allow for the formaliza-
tion of parallel processing and synchronization of control. This is due to the multiple
successor and predecessor steps in a transition.

Semantics Semantically the execution of an SFC encounters states, which are (m,a, s)
tuples. They are characterized by a memory state m, the function from variables to their
values, a set of active action blocks a that need to be processed and a set of active steps
s.

The semantics is defined by a state transition system which comprises two kinds of
rules:

1. A rule for processing of an action block from the set of active action blocks a. This
corresponds to updating the memory state and removing the processed action block
from a.

2. A rule for performing a state transition. The effect on the system state is that some
steps are deactivated, others are activated. Each transition needs a guard that can be
evaluated to true and a set of active steps. Furthermore, we require that all pending
action blocks of a step that is to be deactivated have been executed.

It is customary to specify the timing behavior of a step by time slices: a (maximal)
execution time associated with it. In our work, this is realized using special variables
that represent time.

2.2 The FBD Language

Function block diagrams are a language from the IEC 61131–3 standard used to model
the behavior of action blocks in SFC. Other languages that may be used for this purpose
comprise instruction lists (IL) and ladder diagrams (LD).

FBD comprise two basic kinds of elements: function blocks and connections be-
tween them. Each function block represents an instruction. There are special instruc-
tions for reading and writing global variables. Edges between function blocks are used
to model dataflow. Thus, FBD are used to describe functions.



Apart from the basic functionality, FBD may contain cycles in their dataflow de-
scription. Semantically such a cycle must feature a delay element. Variable values as-
sociated with such an FBD are computed in an iterative process.

In the case of cyclic dependencies an FBD has to be associated with a time slice,
a maximal time – number of iterations – for the execution of the FBD. Thus, on an
abstract level, FBD may still be regarded as functions and as SFC action blocks.

We have formalized an FBD syntax and semantics framework in COQ that follows
the description above. Most parts of this, however, are only to be used manually by
users who manually change system descriptions and corresponding proofs.

3 The Tool Setting

In this section we describe our CERTPLC tool’s architecture and usage scenarios. Fig-
ure 2 shows the CERTPLC ingredients and their interconnections. In an invocation of
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Fig. 2: CERTPLC overview

the tool framework an SFC model is given to a

– representation generator which generates a COQ representation out of it. This is
included in one or several files containing the model specific parts of the semantics
of the SFC model. The COQ representation is human readable and can be validated
against the original graphical SFC specification by experienced users.

The same SFC model is given to a

– proof generator which generates COQ proof scripts that contain lemmas and their
proofs for some basic properties that state important facts needed for machine han-
dling of the proofs of more advanced properties.



In order to achieve a certificate one needs a property that the certificate shall ensure. One
needs to formalize this desired property. The property is proved in COQ by using either
a provided tactic or a hand written proof script. Our provided tactics use the generated
properties and their proofs – provided by the proof generator – and a collection of

– proofs and tactics, a kind of library. It contains additional preproved facts and
tactics which may be used to automatically prove a class of properties.

System description, used lemmas and their proofs, and the property and its proof form
a certificate.

Furthermore, our tool framework comprises a COQ library that can be used by gen-
erated and non-generated COQ files. It allows storage of often used definitions in addi-
tion to the elements described so far. We have formalized some behavioral definitions
of PLC blocks which are typically modeled in other languages than SFC.

Usage Scenario

CERTPLC is developed to support the following standard usage scenario:

– A PLC is developed using the following work-flow:
1. Establishing requirements,
2. and derive some early formal specification.
3. Based on this specification the overall structure – e.g., the control flow – is

specified using the SFC language. More fine-grained behavioral aspects are
textually specified, e.g., by annotating the SFC structure.

4. Taking the requirements and this specification, developers potentially using the
help of automatic verification tools derive and specify consistency conditions
and properties that must hold. Some consistency conditions may directly cor-
respond to a subset of the requirements.

– Regarding 3) the SFC structure is modeled in the graphical EasyLab tool or im-
ported into EasyLab.

– Regarding 4) properties and SFC action blocks are specified using the COQ syntax
by trained developers. It is not required to do any proofs in COQ for this.

– CERTPLC generates representations for the PLC specification. Together with the
properties a certificate is established automatically or with user interaction: the
choice of tactics and in some-cases hand-written proof script code.

– The PLC development is further refined and fine grained parts may be implemented
using other languages from the IEC 61131–3 standard.

– Certificates may be either regenerated – if possible – or manually adapted – in case
of unsupported language elements that may occur during the refinement – to cope
with possible changes.

The certificate can be distributed and analyzed independently by third parties. One over-
all goal is to convince certification authorities and potential customers of the correctness
of PLC with the help of certificates. Since the certificates are independent of the orig-
inal development and its tools some confidential data (e.g., the certificate generation
mechanism and the analysis algorithms used to discover properties of the system) does



not have to be revealed during the process of convincing customers or certification au-
thorities.

The described usage scenario can be adapted. It is, e.g., possible to integrate hand
written specifications and proofs.

4 The CertPLC Tool Environment and Coq

In this section we describe COQ specific parts of the CERTPLC tool. We present some
static COQ code that is generic to our framework. Furthermore, we present some PLC
specific example COQ code – definitions and proofs – to demonstrate aspects of its
generation.

Taking the semantics sketch of SFC in Section 2 the semantic representation of the
SFC structure is encoded in COQ as a transition system. For each given SFC SFC we
generate a COQ representation. It specifies a set of reachable states and a transition
relation.

4.1 Realization Using Generic and Generated Files

In order to certify properties of PLC we need files that contain semantics of systems,
interesting properties and proofs of these properties. Some of these files are generic,
i.e., they can be used for a large class of PLC, properties, and proofs. CERTPLC pro-
vides a library of static files that contain generic aspects. Other files are highly specific
to distinct PLC. For each PLC CERTPLC generates files that are just needed for this
particular PLC, properties formulated on it, and proofs that can be conducted on it.

In particular the following aspects are generic, thus, stored in static files:

– Generic definitions and templates for SFC:
• Datatype definitions and derived properties of these datatypes.
• Definitions for building blocks: SFC action blocks, FBD blocks, and common

combinations of these blocks.
• Generic semantics framework comprising an instantiable state transition rela-

tion and a generic definition for a set of reachable states.
– CERTPLC is designed to support tactics for solving certain proof aspects. In par-

ticular we distinguish:
• Tactics that contain an overall proof structure, deal with certain system struc-

tures and property structures.
• Tactics that solve arithmetic constraints.

The following aspects are individual for each PLC, thus, they are generated:

– A state transition like representation of SFC formalized using generic SFC def-
initions and a concrete definition of reachable states instantiating a generic SFC
definition.

– Lemmas containing system-specific facts on the PLC and their proofs.

Furthermore, the properties that shall hold are of course specific to each PLC. Their
verification is done by either using a tactic that assembles the generic and non-generic
parts of the proof or by some hand-written proof script adaptations.



4.2 Generic / Static Parts of the Coq Infrastructure

Here we describe generic parts of the COQ parts in our CERTPLC tool framework.
These are realized as static COQ files and can used by the dynamically created files.

Datatypes Datatypes which we have formalized for SFC comprise integers of different
length (8,16,32 bit, unbounded) and bools. In COQ they are stored using the datatype
nat of natural numbers plus a flag that tags them as being members of an integer type.
Operators working on these integers perform operations compliant with the type. An
easy integration of other bounded integer formalizations (as used e.g., in [15]) is also
possible.

Other datatypes like floating point are seldomly used in PLC applications. They are
not yet supported, although they could be integrated relatively easy: The basic seman-
tics definitions in our framework are able to support a much richer type system, even
dependent datatypes.

Building Blocks Building blocks define common elements for the construction of PLC.
Two levels of building blocks can be distinguished:

– Function blocks that are intended to become part of FBD.
– Predefined action blocks. These may be, but do not have to modeled using FBD.

As mentioned in Section 3 we have formalized some of these blocks. Further formaliza-
tion of blocks should be done together with new case studies since different application
domains have different sets of FBD and SFC elements. FBD elements that are highly
specific to a single application or an application domain are highly common in PLC.
For FBD we have experienced even vendor specific elements for the basic arithmetic
operations.

Generic Semantics Framework The COQ realization of the SFC syntax follows the de-
scription presented in Section 2. For compatibility with the EasyLab tool and to ease
generation we distinguish between steps and step identifiers in our COQ files, thereby
introducing some level of indirection. Most importantly, our semantics framework com-
prises a template for a state transition relation of PLC systems and a template for defin-
ing the set of reachable states. In order to realize this, we first define generic instantiable
predicates that formalize a state transition relation. We provide a predicate executeAc-
tion defined in Figure 3 to give a look and feel. It formalizes the effect of the execution
of an action block: The predicate takes two states (sometimes called configurations c
and c′) and returns a value of type Prop. We require four conditions to hold in order to
take a state transition:

1. An action block a needs to be active.
2. The memory mapping after the transition is the application of a to the previous

memory mapping. This is the updating of the memory by executing the action
block.

3. The action block a is removed from the set of active action blocks during the tran-
sition.



Definition executeAction:
fun c c’ =>

let ’(m,activeA,activeS) := c in
let ’(m’,activeA’,activeS’) := c’ in

(exists a, In a activeA /\ m’ = a m /\
activeA’ = remove Action_eq_dec a activeA) /\
activeS = activeS’.

Fig. 3: The executeAction predicate

4. The rest of the state does not change.

Another predicate stepTransition formalizes the effect of a transition from a set of SFC
steps to another. Here we require the following items:

1. The validity of the transition (guard expression).
2. The memory state may not change.
3. The activation of steps is conform to the semantics.
4. The activation and requirements of action blocks is semantics conform.

Using these predicates we define inductively the set of reachable states as a pred-
icate. It depends on an initial state (comprising a list of initially active steps), and a
transition relation. It is defined following the description in Section 2.

Structural Tactics CERTPLC supports structural tactics that perform the most basic
operations for proofs of properties. They work with semantics definitions based on our
generic semantics framework. Depending on the property such a tactic is selected by
the user and applied as the first step in order to prove the desired property. Different tac-
tics have to be selected by the user: Selection depends on whether the property is some
kind of inductive invariant – the default case mostly addressed in this paper – or another
class of properties. We have identified several other classes that are relevant for differ-
ent application domains. Such a tactic is applied as the first step in order to prove the
desired property. These tactics already perform most operations concerning the system
structure. Especially for the non-standard cases, tactics applications may leave several
subgoals open. These may be handled with more specialized tactics tailored for the
corresponding characteristics of these proof-goals.

Arithmetic tactics Arithmetics tactics solve subgoals that appear at later stages in the
proof. They may be called by structural tactics or work on open subgoals that are left
open by these tactics. They comprise classical decision procedures like (e.g., Omega
[19] – its implementation in COQ).

Up till now, we are only using existing tactics designed by others. However, we
are also working on tactics that combine arithmetic aspects with other system state
dependent information.



4.3 Semantics Definitions as State Transition Systems

As seen in Section 4.2 we only need to instantiate a template in order to create a system
definition that captures the semantics of our PLC. We need to provide at least a set of
initially active steps, a transition relation, and action block definitions.

For the initial step, we provide an initial memory state, where all values are set to a
default value and a single active entry step.

The transition relation is generated by translating the SFC transition conditions into
COQ. The generated COQ elements of the transition relation for the SFC depicted in
Figure 1 are shown in Figure 4. Three tuples are shown, each one comprises a set of
activated source steps, a condition and a set of target steps activated after the transition.
It can be seen that the condition maps a variable value mapping – part of the SFC state
– to a truth condition – returning the type Prop. The types used in this expression are
16-bit integer types.

( Init::nil ,
fun m => ((fun (x : int16) => x <int16 10 ) (m VAR_x) ),
Step2::nil )

( Step2::nil ,
fun m => ((fun (x : int16) => 1 ) (m VAR_x) ),
Init::nil )

( Init::nil ,
fun m => ((fun (x : int16) => x >=int16 10 ) (m VAR_x) ),
Return::nil )

Fig. 4: Generated transition rules in COQ

Appropriate action blocks are selected by their names. In addition, to this, we gener-
ate several abstract datatype definitions for identifying steps with names and identifiers
and function blocks and action blocks.

4.4 Automatically Generated Proofs for System-specific Facts

CERTPLC is designed to automatically generate for each system basic properties and
proofs. These prove some system-specific facts of the system. These proofs are used
automatically by tactics, but can also be used manually to prove additional user defined
properties of systems.

One important fact that needs to be proven is that only those action blocks may
appear in the set of currently active action blocks that do belong to the actual system
definition. Our proof generator generates an individual lemma and its proof for each
PLC. Figure 5 shows such a lemma for an SFC that comprises just two possible action
blocks: action Init and action Step2. The predicate SFCreachable states is created by
instantiating a template definition from the generic semantics framework for a concrete



Lemma aux_1:
forall s, SFCreachable_states s -> (forall a, In a (snd s) ->

( a = action_Init \/ a = action_Step2 )).

Fig. 5: An automatically generated basic property

PLC. In and snd (second) are COQ functions to denote membership in a set and select
an element of a tuple, respectively. In the case at hand snd selects the set of active action
blocks from a state. The proof script itself is also generated. It comprises an induction
on reachable states of the concrete system. Depending on the number of action blocks
in the PLC it can typically comprise several hundred applications of elementary COQ
tactics.

The certification of properties is the key feature of CERTPLC. Users write their
desired properties in COQ syntax. This does not require as much understanding of the
COQ environment as one could think at a first glance. All that is required is writing a
logical formula that captures the desired property.

5 Automatic Certification of Invariant Properties

In this section we describe the principles of automatically proving properties correct.
Proof scripts encapsulating these principles are generated by the CERTPLC framework
components as described in Section 4. We focus on inductive invariants.

5.1 Proof Structure for Inductive Properties

We start with an inductive invariant property I and an SFC description of a PLC SFC .
Following the ideas presented in [8] the structure of a proof contained in our certificates
is realized by generated proof scripts, generic lemmas and tactics. They establish a
proof principle that proves the following goal:

∀ s . s ∈ ReachableSFC =⇒ I(s)

The set of reachable states for SFC is denoted ReachableSFC . JSFC K specifies
the state transition relation (cf. Section 4). First we perform an induction using the
induction rule of the set of reachable states. This rule is automatically established by
COQ when defining inductive sets. After the application the following subgoals are left
open:

I(s0) for initial states s0 I(s) ∧ (s, s′) ∈ JSFC K =⇒ I(s′)

The first goal can be solved in the standard case by a simple tactic which checks that all
conditions derived from I are fulfilled in the initial states.

For the second goal the certificate realizes a proof script which – in order to allow
efficient certificate checking – performs most importantly the following operations:

– Splitting of conjunctions in invariants into independently verifiable invariants.



– Splitting of disjunctions in invariants into two independently verifiable subgoals.
– Normalizing arithmetic expressions and expressions that make distinctions on ac-

tive steps in the SFC.
– Exhaustive case distinctions on possible transitions. Each case distinction corre-

sponds to one transition in the control flow graph of the SFC. A typical case on a
transition from a partially specified state s to a partially specified succeeding state
s′ can have the following form:

∀ s s′ .

I(s) and case distinction specific conditions on s ∧
case specific transition conditions that need to be true to go from s to s′ ∧
case distinction specific definition of s′ =⇒ I(s′)

The case distinction specific parts in such a goal can, e.g., feature arithmetic con-
straints, which can be split into further cases.
Some of the cases that occur can have contradictions in the hypothesis. Consider for
example an arithmetic constraint for a variable from a precondition of a state con-
tradicting with a condition on a transition. These contradictions result from the fine
granularity of our case distinctions. Some effort can be spent to eliminate contra-
dicting cases as soon as possible (cf. [8]) which can speed up the checking process.
Unlike in classical model-checking we get the abstraction from (possibly infinite)
concrete states to (finite) arcs in the control flow graph almost for free. Thus, in our
case distinctions, we do not have to regard every possible state, we rather partition
states into classes of states and reason about these classes symbolically.

– The final step comprises the derivation of the fact that the invariant holds after
the transition from the transition conditions and the decision of possible arithmetic
constraints.

[8] features a completeness result for a class of inductive invariants for a similar prob-
lem.

5.2 Proving Non Inductive Invariants

The main focus of CERTPLC is on inductive invariants, However, additionally we have
established a collection of preproved lemmas useful for proving the (un-)reachability
of certain states. In particular the following cases turned out to be necessary in our case
studies:

– State s can only be reached via a transition where a condition e must be enabled, s
is not initial, e can never be true in the system, this implies s can not be reached.

– Under system specific preconditions: Given an expression over states e, if e be-
comes true the succeeding state will always be s. This is one of the few non-
inductive properties. However, the proof of this benefits from a proof that e can
only become true in an explicitly classified set of states. This can be provided by
one of the techniques above.

Additional consistency properties may be certified by hand-written proof scripts. This,
however, requires some level of expertise in COQ.



6 Additional Implementation Aspects and Evaluation

Here we describe additional implementation aspects that are not covered in the previous
sections and provide a short evaluation.

The COQ representation generator is implemented as an Eclipse plug-in in Java
using the IEC 61131–3 meta model of EasyLab and the Eclipse Modeling Framework
(EMF) [14]. Representations and lemmas + proofs for basic properties are generated for
COQ 8.3. Likewise our libraries for tactics, lemmas and SFC action blocks are formal-
ized using this version. The realization of this representation generator can be regarded
as a simple compiler or model to model transformation. A kind of visitor pattern is used
to pass through the model representation in EMF format and emit corresponding COQ
code. The generation of PLC specific lemmata and their proofs is similar to code gen-
eration. A visitor picks all necessary information and generates the lemma text and its
proof script. Some storage of intermediate information is needed. The setup is similar
to the techniques used in [8] and [9].

Likewise our work builds upon the PLC semantics of EasyLab which we have for-
mally described [6] and realized in COQ. A combination of our SFC semantics with a
semantics of the instruction list (IL) language and an associated case study can be found
in [7].

7 Conclusion and Future Work

In this paper we have presented the CERTPLC environment for certification of PLC
We described the architecture of the tool framework, possible usage scenarios, the tech-
nical realization, and parts of the COQ semantics. CERTPLC is aimed at the formal
certification of PLC descriptions in the SFC language. Nevertheless, some features of
FBD are integrated. Future work shall extend this support and aims at integrating other
languages from the IEC 61131–3 standard. At the current state, the implementation of
the tool is sufficient to handle SFC comprising standard elements and smaller invariants
efficiently. We believe that the generic parts common to most SFC verification work are
realized in CERTPLC. The tool framework is designed such that it is easily extendable,
e.g., with additional tactics, arithmetic decision procedures and building blocks for SFC
and FBD elements. Such additions – which might be used only in certain problem and
application domains – are subject to future work.
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