
Translation Validation of System Abstractions!

Jan Olaf Blech, Ina Schaefer, Arnd Poetzsch-Heffter

Software Technology Group
University of Kaiserslautern

Germany

Abstract. Abstraction is intensively used in the verification of large,
complex or infinite-state systems. With abstractions getting more com-
plex it is often difficult to see whether they are valid. However, for using
abstraction in model checking it has to be ensured that properties are pre-
served. In this paper, we use a translation validation approach to verify
property preservation of system abstractions. We formulate a correctness
criterion based on simulation between concrete and abstract system for
a property to be verified. For each distinct run of the abstraction proce-
dure the correctness is verified in the theorem prover Isabelle/HOL. This
technique is applied in the verification of adaptive embedded systems.

1 Introduction

Recently, a large amount of research has addressed the verification of large,
complex or infinite-state systems using model checking. Due to inherent limita-
tions model checkers are unable to deal with such systems directly. So research
concentrated on finding abstractions reducing the state space sufficiently while
preserving necessary precision. However, since abstraction procedures are getting
more complex it is not always clear if they are valid, i.e. that properties veri-
fied for the abstract system also hold in the concrete system. In principle, there
are two approaches to guarantee correctness of abstractions: Abstraction algo-
rithms (and their implementations!) are verified once and for all. Alternatively,
abstraction results of each distinct run of the abstraction procedure are proved
correct. In this work, we will propose a technique for guaranteeing abstraction
correctness using the second approach.

The overall structure of our approach is depicted in Figure 1. For verify-
ing a system abstraction, the abstraction procedure is given a concrete system
comprising a property to be checked. As output an abstract system with a corre-
sponding abstract property is produced. Furthermore, a proof script is generated
doing the actual proof that the abstraction preserves the considered property. A
correctness criterion based on simulation between abstract and concrete system
is formalized. Using the proof script, this criterion is checked for the consid-
ered concrete and abstract systems and properties in the theorem prover Is-
abelle/HOL [14]. Thus the correctness of an abstraction is verified for each run
! supported by the Rheinland-Pfalz Cluster of Excellence ‘Dependable Adaptive Sys-

tems and Mathematical Modelling’ (DASMOD)

Modeling
Model CheckerAbstraction

Isabelle/HOL

proof script

additional theories

system descriptionsystem description

Environment

abstract

Fig. 1. Our Translation Validation Infrastructure

of the abstraction procedure. Note that the correctness of the technique does
not depend on the proof script provided. An incorrect proof script may never
lead to an incorrect proof but rather to no proof at all.

Our work towards runtime verification of system abstractions is inspired by
a translation validation [15] based approach for compilers [12, 4, 16]. In the area
of compiler verification, it has turned out that runtime verification of compilers
is often the method of choice for achieving guaranteed correct compilation re-
sults. As for compilers, correctness proofs for distinct abstractions are usually
less complex and easier to establish than proofs for a general abstraction proce-
dure. An additional advantage is that the abstraction procedure can be tailored
to a particular system and property under consideration and thus match the
requirements of the concrete problem very closely while still being proved cor-
rect. Also note, that in our approach the correctness of abstractions is proved
formally using a theorem prover instead of a paper-and-pencil-proof.

The proposed technique is applied in verification of adaptive embedded sys-
tems [1]. Beside potentially unbounded data domains the size of the considered
systems is huge. For efficient verification by model checking, these systems have
to be abstracted in a property-preserving way. We have successfully applied run-
time verification of the necessary abstractions in this domain.

This paper is structured as follows: Section 2 describes the application do-
main of our work. In Section 3, we present a theorem on property preservation.
This is used in the implementation and proving strategies in Section 4. A short
evaluation is given in Section 5. We discuss related work in Section 6 before
concluding in Section 7.

2 Adaptive System Verification

In the EVAS project [1], the application domain is the verification of adap-
tive embedded systems. The considered adaptive systems consist of a set of
synchronously operating modules. Each module is equipped with a set of dif-
ferent predetermined behavioral variants it can adapt to depending on the sta-
tus of the environment. This enhances system reliability and dependability but
also increases design complexity making support for formal verification highly
necessary. The systems are developed in a modeling environment also used for

2

Module = (var, init, configurations, adaptation) with var⊆ Var and init : var→ Val
configurations = {(guardj, next statej, next outj)} for i = 1, . . . , n
guardj: a Boolean constraint on adapt var
next statej, next outj : (var→ Val)→ (var→ Val)
adaptation = (adapt var, adapt init, adapt next state, adapt next out)
adapt var ⊆ Var and adapt init : adapt var→ Val
adapt next state, adapt next out : (adapt var→ Val)→ (adapt var→ Val)

System = ({Module1, . . . , Modulen}, var, adapt var, conna, connd)

Fig. 2. SAS Module and System Description

other purposes such as code generation. Hence, they contain a level of detail not
amenable for automatic verification making system abstractions indispensable.

Figure 2 shows a part of our representation for synchronous adaptive systems
(SAS). A full formal account can be found in [1]. A SAS module consists of a
set of variables var (divided into state and output variables) together with their
initial values, a set of configurations modeling the functional behavior and an
adaptation aspect representing the adaptive behavior. Each configuration con-
sists of a guard determining when this configuration is enabled and the attached
state transition functions for the state and output variables. The adaptation as-
pect comprises a distinct set of adaptation specific variables, their initial values
and state transition functions for the adaptive state and output variables. This
explicit account of adaptive and functional behaviour allows to reason about
functional and adaptive aspects in isolation as well as in combination. The se-
mantics of SAS modules is similar to ordinary transition systems with the dif-
ference that a transition between two module states evolves in two stages: First,
the adaptation aspect computes the new valuation of adaptive state and output
variables. Then, the configuration with valid guard is selected and the respective
state and output transition functions are executed. A SAS system is composed
from a set of modules by connecting their functional and adaptive variables
and the system’s functional and adaptive variables by functional and adaptive
connection functions, conna and connd resp.

As an example of how abstraction facilitates verification of synchronous adap-
tive systems, consider a system that consists of one module with two different
configurations. Every time the input is bigger than a certain threshold, say 50,
the module switches to its first configuration. This configuration uses a specific
algorithm for computing the output. If the input is smaller than 50, the mod-
ule uses configuration 2 computing the output in a different way. An important
property of this example system is that every time the input exceeds 50 config-
uration 1 is used in order to make sure that the appropriate algorithm is em-
ployed. This property can be stated in a variant of the temporal logic CTL*[11]
as ϕ ≡ AG(input ≥ 50 → useconf = 1) modeling the used configuration by a
variable useconf . For ϕ, the actual functionality of the system is irrelevant.

Because the input domain in the example system is unbounded ϕ cannot be
model checked directly. However, we can abstract the system by mapping the

3

Fig. 3. Illustration of the example system

infinite domain of input values to a finite abstract domain while preserving the
property under consideration. We choose the abstract domain V̂al = {low, high}.
The abstraction function h : Val → V̂ al is defined as h(v) = low if v < 50
and h(v) = high if v ≥ 50. Then the abstract system will use configuration
1 if the input is high and configuration 2 if it is low. Figure 3 depicts the
concrete and abstract system as automata. The property ϕ is abstracted to
ϕ̂ ≡ AG(input = high → useconf = 1). With the approach presented in this
paper we will be able to verify at runtime of the abstraction procedure that
the abstraction preserves ϕ. This means that if we are able to verify ϕ̂ for the
abstract system ϕ also holds for the concrete.

We apply our approach to adaptive systems in the automotive sector. An
adaptive system implementing the ABS (antilock braking system) consists of a
large number of different modules and hundreds of different variables ranging
over unbounded domains. While in the simple example, the correctness of the
abstraction can be easily seen, in real-world examples abstractions become very
complex and require support for automatically verifying their correctness.

3 Property Preservation by Simulation

In this section, we present the basis for the correctness criterion used in our
translation validation approach. It uses the fact that a property is preserved un-
der abstraction if there is a consistent simulation between abstract and concrete
system. In this presentation, we will use general transition systems as SAS se-
mantics are defined in this way. Futhermore, this allows to extend the approach
to a broader range of systems expressible as transition systems. For a more
detailed formal account and proofs, see the extended version of this paper [5].

Definition 1 (Transition System). A transition system T = (Σ, Init ,!) is
defined by Σ, the set of states σ : Var → Val for a set of variables Var and
a set of values Val, Init ⊆ Σ, the set of initial states and !⊆ Σ × Σ, the
transition relation. A path of T is defined as a sequence of states π = σ0σ1 . . .

4

where σ0 ∈ Init and σi ! σi+1 for all i ≥ 0. The set Paths(T) denotes the set
of possible paths of T .

We use a variant of the temporal logic CTL*[11] to express properties over
computation paths of T . The atomic propositions are constraints on variables,
e.g. x = y or input ≤ 50. Besides Boolean negation, conjunction and disjunction
we have temporal operators, e.g. Xϕ (”next”) denoting that ϕ holds in the next
state or Gϕ (”globally”) denoting that ϕ holds on all states of a path. Addi-
tionally, we have path quantifiers Eϕ and Aϕ. Eϕ denotes that there exists a
computation path on which ϕ holds. Aϕ denotes that for all computation paths
ϕ holds. Atomic propositions are interpreted over a state σ by evalutating the
variable assignments, e.g. (T , σ) |= (x = y) iff σ(x) = σ(y). Boolean and CTL*
operators are interpreted standardly. T |= ϕ denotes that ϕ holds on paths start-
ing in the initial states. Atoms(ϕ) returns the set of atomic propositions used
in a CTL* formula ϕ. ACTL* denotes the fragment of CTL* where only the
universal path quantifier A is used.

In order to be able to formulate a criterion when a property is preserved
we need the notion of simulation between two transition systems. A transition
system T is simulated by an abstract transition system T̂ if we can find a
simulation relation R between the two sets of states such that firstly for all
initial states of T there exists a related initial state in T̂ and secondly that for
any pair of related states with a transition in T there is also a transition in T̂
such that the resulting states are related.

Definition 2 (Simulation of transition systems). Let T and T̂ be two tran-
sition systems. We say that T̂ simulates T , denoted T (T̂ , iff there exists a
simulation relation R ⊆ Σ × Σ̂ such that

1. for all σ0 ∈ Init there exists σ̂0 ∈ Înit such that R(σ0, σ̂0)
2. for 0 ≤ i and σi, σi+1 ∈ Σ and σ̂i ∈ Σ̂ with R(σi, σ̂i) and σi ! σi+1 there

exists σ̂i+1 ∈ Σ̂ such that σ̂i!̂σ̂i+1 and R(σi+1, σ̂i+1).

If a transition system T is simulated by T̂ we can show that for each path in T
there is a corresponding path in T̂ . This result is important for the preservation
of temporal operators in a CTL* formula. The proof proceeds by induction on
the length of a path.

Lemma 1 (Corresponding paths in T and T̂). Let T and T̂ be two tran-
sition systems such that T (T̂ with simulation relation R. Then for every
path π = σ0σ1 . . . ∈ Paths(T) there exists a corresponding path π̂ = σ̂0σ̂1 . . . ∈
Paths(T̂) such that R(σi, σ̂i) for all i ≥ 0.

Now we are in the position to justify the criterion that allows to conclude
T |= ϕ from T̂ |= ϕ̂ for ϕ and ϕ̂ in ACTL*. Existential properties are typically
lost under abstraction. The result is based on simulation between the concrete
and the abstract system and an additional consistency condition between con-
crete and abstract property. The consistency criterion intuitively expresses that

5

the atomic propositions must be preserved under abstraction. In order to state
the consistency condition we need a concretization function C that maps an ab-
stract property ϕ̂ to an corresponding property ϕ over the concrete system T .
It is defined on atomic propositions and compatibly lifted to ACTL* formulas.
This reflects the potentially different interpretations of variables in concrete and
abstract system. The concrete choice of simulation relation and concretization
mapping depends on the abstraction procedure used.

Theorem 1 (Property-Preservation of ACTL*). Let T = (Σ, Init ,!) and
T̂ = (Σ̂, Înit , !̂) be two transition systems, ϕ a ACTL* formula over T and ϕ̂
an ACTL* formula over T̂ . Then it holds that

T̂ |= ϕ̂ implies T |= ϕ

iff there exists a simulation relation R ⊆ Σ × Σ̂ and a concretization function
C : ACTL*[T̂]→ ACTL*[T] such that the following conditions hold:

1. Initial Simulation: for all σ0 ∈ Init there exists σ̂0 ∈ Înit such that R(σ0, σ̂0)
2. Step Simulation: for all i ≥ 0, σi, σi+1 ∈ Σ and σ̂i ∈ Σ̂ with R(σi, σ̂i) and

σi ! σi+1 there exists σ̂i+1 ∈ Σ̂ such that σ̂i!̂σ̂i+1 and R(σi+1, σ̂i+1).
3. Consistency: for all â ∈ Atoms(ϕ̂) if R(σ, σ̂) and (T̂ , σ̂) |= â

then (T , σ) |= C(â)
4. Implication: T |= C(ϕ̂)→ ϕ.

The proof is by induction of the structure of the formula ϕ̂. The base case
uses the consistency condition. The induction step for temporal operators and
path quantifiers uses the path lemma. This theorem constitutes the necessary
conditions for the correctness criterion in our translation validation approach. It
differs from other approaches using property-preservation by simulation [7, 2, 10]
therein that states of the underlying system model are characterized by variable
assignments and that atomic propositions in the applied logic are constraints over
these assignments. This requires a concretization function but eases to work with
systems where states are described by valuations of variables such as in SAS.

Furthermore, Theorem 1 is formulated in a very general fashion that allows to
instantiate it with a number of different kinds of abstractions. In this direction,
it can be used to justify the domain abstraction approach proposed in [6]. The
concrete transition system is defined over a concrete data domain D, either very
large or infinite. Thus, the system can only be model checked very inefficiently
if at all. So the concrete domain is mapped to an abstract domain D̂ by an
homomorphic abstraction function h : D → D̂. In order to prove that a property
ϕ is preserved under this form of domain abstraction we have to establish a
simulation relation between Σ and Σ̂ satisfying the conditions of Theorem 1.
This is the relation defined by (σ, σ̂) ∈ R if σ̂(x) = h(σ(x)) for all x ∈ Var . The
concretization function C for an atomic proposition maps the formula x = v̂ for
x ∈ Var and v̂ ∈ D̂ to the disjunction over all concrete values that are mapped
to the abstract value v̂, i.e

C(x = v̂) =
∨

h(v)=v̂

(x = v)

6

The concretization function is compatibly lifted to ACTL* formulas. This form
of abstraction is also applied in the example of Section 2.
Another abstraction procedure that can be mapped to this theorem is omitting
variables that are irrelevant for the considered property, similar to dead code
elimination in compiler optimization. Here, the abstract system T̂ only contains
a subset of the variables of T , i.e. V̂ar ⊆ Var while the rest of the system remains
the same. The simulation relation between two states can be defined as R(σ, σ̂)
iff σ(x) = σ̂(x) for all x ∈ V̂ar . The concretization function is simply the identity
function since the interpretation of the atomic propositions does not change if
the abstraction is carried out correctly. Besides these two abstraction procedures
we aim at extending our work to more complicated and powerful abstractions
(see Future Work in Section 7).

4 The Translation Validation Infrastructure

In this section, we describe the different steps for verifying a system abstrac-
tion correct in Isabelle/HOL[14]. Firstly, we have to generate an Isabelle/HOL
description of both the concrete and the abstract system. Secondly, we have to
formalize a criterion stating the correctness of an abstraction in Isabelle corre-
sponding to the conditions of Theorem 1. Finally, we need a proof script that
proves that the concrete and abstract system description fulfill the correctness
criterion. Note that instead of the more general transition relation in Theorem 1
we use explicit state transition functions in the Isabelle formalization correspond-
ing to the SAS system specification (cf. Figure 2). We chose the higher order
theorem prover Isabelle/HOL for its greater degrees of freedom in specification
allowing shorter and more elegant formalizations.

4.1 Representing Systems in Isabelle

In our implementation, Isabelle representations of concrete and abstract system
are generated right before and after a run of the abstraction procedure. Con-
crete and abstract systems are represented using the same datatypes. We use
a shallow embedding of our system description language into the Isabelle/HOL
theorem prover. This means that we formalize the semantics of a system directly
within Isabelle’s Higher Order Logic constructs. Since the semantics is basically
defined via state transition functions we use Isabelle syntax to directly encode
these functions. In contrast to a shallow embedding, a deep embedding would
require to formalize the syntax of the system description language in Isabelle1

and define a semantics on top of the syntactical elements. Some of the SAS spec-
ifications are not entirely formulated as executable programs. Instead they are
only characterized via pre- and postconditions. Due to the more abstract nature
of shallow embeddings such issues are much easier to deal with in our approach.
1 see e.g. [18] for a comparison between deep and shallow embedding in an Is-

abelle/HOL environment

7

We also believe that we can adopt to changes in the underlying datatypes faster
if we do not formalize them in Isabelle directly.

Thus, to generate Isabelle system semantics representations we need to con-
vert a system description directly into Isabelle (state transition) functions. Fur-
thermore, we generate datatypes representing system states to serve as argu-
ments for these functions. Due to the finite number of variables in each system
we encode states as tuples of values rather than in a mapping function. This sim-
plifies conducting the proofs. Variable references are encoded as selectors to such
tuples. We do not distinguish between different kinds of variables (adapt var,
var cp. Fig 2) in the state encoding. Input is implicitly regarded as a stream
of input elements. One element after the other is consumed during system ex-
ecution. Initial states are encoded as functions assigning initial values to an
arbitrary state.

A SAS module is divided into an adaptation aspect for adaptive behavior and
functional configurations. Before evaluating the functionality of a configuration
the adaptive part (adapt next state and adapt next out) is evaluated. The actual
functionality of a configuration (next statej and next outj) is selected using a
guard formula. In our semantics framework we encode this behavior by eval-
uating the Isabelle representation for adapt next state and adapt next out first.
Then we make a case distinction on the guard formulas (several if-clauses) se-
lecting the appropriate Isabelle representation for the configuration functions
next statej and next outj to be evaluated. The generation of the system state
transition function is done using a visitor pattern on the datatypes representing
the input systems. While visiting parts of the system description corresponding
parts for the state transition function are emitted in Isabelle/HOL syntax. These
parts are composed to a large state transition function representing a system’s
semantics within Isabelle/HOL.

In systems with more than one module, we generate Isabelle representations
for each module. Since we deal with synchronous systems, modules do not affect
each other during a single transition. Hence, we can evaluate the modules’ state
transition functions one after the other. Evaluation order does not matter. An
addition to this, we generate Isabelle representations for the connections between
modules which are functions themselves. All these functions are composed into a
single state transition function representing a system’s semantics. This technique
works for concrete and abstract systems equally well.

4.2 Formalizing Abstraction Correctness in Isabelle

For proving that an abstraction is valid we need a formalization of property
preservation in Isabelle/HOL. Such a formalized correctness criterion (Figure 4)
has to fulfill the conditions stated in Theorem 1. The first two conditions (in
both the theorem and the figure) correspond to the simulation between the two
systems. These first two conditions are formalized once for all systems. With
a slight generalization they can also be applied for the verification of compiler
optimization phases (cf. [4, 12]).

8

constdefs systemequivalence ::
(state => state) => (state’ => state’) => state => state’ =>

(state => state’ => bool) => concprop => absprop => concfun => bool
"systemequivalence nextstate nextstate’ s0 s0’ R c a C ==
R s0 s0’ &
ALL s s’. R s s’ --> R (next s) (next s’) &
consistency(R,C) & implies(C (a),c)"

Fig. 4. Correctness Criterion

The third condition in Theorem 1 requires that the simulation relation pre-
serves consistency. We are free to chose the notion of consistency by instantiating
the concretization function C. However, we have to ensure that the fourth condi-
tion of Theorem 1 still holds. In order to establish condition 4 in Theorem 1, one
can formulate properties to be checked in terms of the abstractions in the first
place. In our case studies, however, properties are usually formulated in terms
of the concrete system. Hence, one has to verify that the concretization of the
abstract property implies the concrete property.

Figure 5 shows a small extract from a typical simulation relation for a domain
abstraction. It takes two states A and B of concrete and abstract system and
ensures that whenever the variable in1 in the concrete system has a value less
than 50 then the value of in1 in the simulating abstract system must be low. In
the complete simulation relation for a system, we encode a condition for every
variable abstraction being performed. In contrast to this fragment of a simulation
relation designed for domain abstractions the simulation relation for omission of
variables is even simpler. Here, no condition is put on an omitted variable in the
relation.

constdefs inputequivalence :: "S1 => S2 => bool"
"inputequiv A B == (((in1 A = low) = (in1 B <= 50)) & ..."

Fig. 5. Simulation Relation

The simulation relation for a concrete system can be generated by the ab-
straction procedure or adjusted by hand. It reflects the performed abstractions.
Note that the concretization function C in Theorem 1 directly corresponds to
the simulation relation. In our example simulation relation, the abstract value
on the left side of the equation is the argument of C whereas the concrete value
on the right side refers to the result of the concretization.

4.3 Proving Abstractions Correct

To conduct the correctness proof we still need a proof script. In our current im-
plementation we first prove additional lemmata implying the actual correctness

9

lemma simu_step_helper:
"(funequiv A B) & (inputequiv A B) & (funequiv’ A B) --> (funequiv (M1’ A A) (M1 B B))"

apply (clarify, unfold funequiv_def inputequiv_def, clarify)
apply (unfold M1_def, unfold M1’_def)
apply (erule subst)+
apply (unfold funequiv’_def funequiv_def inputequiv_def)
apply clarify
apply (rule conjI, simp) +
apply simp
done

Fig. 6. Proof Script

criterion. The simu step helper lemma is a generic part for proving abstrac-
tion of variable domains and omission of variables correct. The lemma as well
as its proof is depicted in Figure 6. The formalization of the lemma is shown in
the first line. The rest is the proof script computing the proof for this lemma.
A proof script can be considered as a kind of program that tells the theorem
prover how to conduct a proof. It comprises the application of several tactics
(apply) which can be regarded as subprograms in the proving process. In the
proving process the theorem prover symbolically evaluates state transition func-
tions (M1,M1’) on symbolic states. These symbolic states are specified by their
relation to each other. The theorem prover checks that the relation between the
states still holds after the evaluation of the transition functions. The predicates
funequiv and inputequiv together imply system equivalence and in general do
highly depend on the chosen simulation relation. For the case studies examined
so far, we have developed a single highly generic proof script (which the lemma
simu step helper is a part of) that proves the correctness in all scenarios con-
taining domain abstractions and omission of variables. For more complicated
scenarios the proof script might need adaptation. This was the case in the orig-
inal compiler scenario where adaptations could be done fully automatically [4].

5 Evaluation of our Framework

The AMOR (Abstract and MOdular verifieR) tool prototypically implements the
technique proposed in this paper for domain abstractions and omitting variables.
We have successfully applied it in several case studies in the context of the
EVAS project [1] and proved that interesting system properties were preserved by
abstractions. Our largest example with domain abstractions contained amongst
others 39 variables with infinite domains. Examined system representations had
up to 2600 lines of Isabelle code. In some of these scenarios, model checking
was not possible without abstractions. Thus, our technique bridges a gap in
the verification process between a system model representation in a modeling
environment (used e.g. for code generation) and an input representation for
verification tools. The time to conduct the proofs did not turn out to be a
problem contrary to our translation validation work on compilers [4].

10

6 Related Work

While previously correctness of abstractions was established by showing sound-
ness for all possible systems, for instance in abstract interpretation based ap-
proaches [8, 9], our technique proves an abstraction correct for a specific system
and property to be verified. In this direction, we adopted the notion of translation
validation [15, 19] to correctness of system abstractions. Translation validation
focuses on guaranteeing correctness of compiler runs. After a compiler has trans-
lated a source into a target program a checker compares the two programs and
decides whether they are equivalent. In our setting, we replace the compiler by
the abstraction mechanism, the source program by the original system and the
target program by the abstract system. Isabelle/HOL[14] serves as checker in
our case. In the original translation validation approach[15] the checker derives
the equivalence of source and target via static analysis while the compiler is
regarded as a black box. In subsequent works, the compiler was extended to
generate hints for the checker, e.g. proof scripts or a simulation relation as in
our case, in order to simplify the derivation of equivalence of source and tar-
get programs. This approach is known as credible compilation [17] or certifying
compilation [12]. Translation validation in general is not limited to simulation
based correctness criteria. However, also for compiler and transformation algo-
rithm verification simulation based correctness criteria can be used (see e.g. [3]
for work with a similar Isabelle formalization of simulation).

Simulation for program correctness was originally introduced by [13]. Since,
property preservation by simulation has been studied for different fragments of
CTL* and the µ-calculus. The authors in [7, 2, 10] use Kripke structures as their
underlying system model where either states are labeled with atomic proposi-
tions or atomic propositions are labeled with states. This reduces the consistency
condition to checking that the labeling of two states in simulation is the same.
However, this complicates the treatment of systems defined by valuations of vari-
ables such as SAS. In [6], the authors use a system model similar to ours, but
this work is restricted to data domain abstraction while our technique can be
applied for different abstraction mechanisms. Abstract interpretation based sim-
ulations as used in [2, 10] are also less general than generic simulation relations
considered here.

7 Conclusion

In this paper, we presented a technique for proving correctness of system abstrac-
tions using a translation validation approach. Based on property-preservation by
simulation we formalized a correctness criterion in Isabelle/HOL. With the help
of generic proof scripts we are able to verify abstractions correct at runtime
of the abstraction procedure. Our technique was successfully applied in various
case studies verifying data domain abstractions and omission of variables.

For future work, we want to apply our technique to further and more com-
plex abstraction procedures. In particular, we want to focus on abstractions of

11

hierarchical systems where simple stepwise simulation relations will no longer
be sufficient. Additionally, we are planning to investigate the interplay between
modularization and abstraction in order to further reduce verification effort.

References

1. R. Adler, I. Schaefer, T. Schuele, and E. Vecchie. From Model-Based Design to
Formal Verification of Adaptive Embedded Systems. In Proc. of ICFEM 2007,
November 2007.

2. S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property preserving simu-
lations. In Proc. of CAV ’92, pages 260–273, London, UK, 1993. Springer-Verlag.

3. J. O. Blech, L. Gesellensetter, and S. Glesner. Formal Verification of Dead Code
Elimination in Isabelle/HOL. In Proc. of SEFM, pages 200–209, September 2005.

4. J. O. Blech and A. Poetzsch-Heffter. A certifying code generation phase. In Proc.
of COCV 2007, Braga, Portugal, ENTCS, March 2007.

5. J. O. Blech, I. Schaefer, and A. Poetzsch-Heffter. On Translation Validation for
System Abstractions. Technical Report 361-07, TU Kaiserslautern, July 2007.

6. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
ACM TOPLAS, 16(5):1512–1542, September 1994.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proc.
of POPL, pages 238–252. ACM Press, January 1977.

9. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. of POPL, pages 269–282. ACM Press, January 1979.

10. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

11. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science. Elsevier, Amsterdam, 1990.

12. M. J. Gawkowski, J. O. Blech, and A. Poetzsch-Heffter. Certifying Compilers based
on Formal Translation Contracts. Technical Report 355-06, TU Kaiserslautern,
November 2006.

13. R. Milner. An algebraic definition of simulation between programs. In Proc. of
IJCAI, pages 481–489, 1971.

14. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

15. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Proc. of TACAS,
volume 1384 of LNCS. Springer, 1998.

16. A. Poetzsch-Heffter and M. J. Gawkowski. Towards proof generating compilers.
Electronic Notes in Theoretical Computer Science, 132(1):37–51, 2005.

17. M. Rinard and D. Marinov. Credible compilation with pointers. In Proc. of the
FLoC Workshop on Run-Time Result Verification, Trento, Italy, July 1999.

18. M. Wildmoser and T. Nipkow. Certifying machine code safety: Shallow versus deep
embedding. In Theorem Proving in Higher Order Logics, LNCS. Springer, 2004.

19. L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A methodology for the
translation validation of optimizing compilers. Journal of Universal Computer
Science, 9(3):223–247, March 2003.

12

