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Abstract

Guaranteeing correctness of compilation is a major precondition for correct software. Code generation can
be one of the most error-prone tasks in a compiler. One way to achieve trusted compilation is certifying
compilation. A certifying compiler generates for each run a proof that it has performed the compilation
run correctly. The proof is checked in a separate theorem prover. If the theorem prover is content with the
proof, one can be sure that the compiler produced correct code.

This paper presents a certifying code generation phase for a compiler translating an intermediate language
into assembler code. The time spent for checking the proofs is the bottleneck of certifying compilation. We
exhibit an improved framework for certifying compilation and present considerable advances to overcome this
bottleneck. Our framework comprises a checker — an executable program that is formalized within a theorem
prover to increase the speed of distinct sub tasks of certificate checking. We prove our checker correct and
thus are able to use it instead of traditional proving techniques within our theorem prover environment. We
compare our implementation featuring the Coq theorem prover to an older implementation. Our current
implementation is feasible for medium to large sized programs.
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1 Introduction

Today’s software systems are developed using high-level model or programming
languages, even for safety critical embedded systems. Since their runtime behavior
is controlled by the compiled code the need for trusted compilation is more pressing
than ever. Results achieved from static analyses and formal methods on the source
code level have often to be considered worthless if the formalization chain from
high-level formal methods to the machine-code level is not closed.

Two general approaches can be distinguished to bridge this gap. Thus estab-
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Fig. 1. Certifying Compiler

Certified compilers prove in a first step that the algorithms of the compiler define
a correct translation for all given well-formed input programs (compiler algorithm
correctness) and second that the algorithms are correctly implemented on a given
machine (compiler implementation correctness).

Certifying compilers (cp. Figure 1) provide a proof (called certificate) that a target
program is a correct translation of a source program whenever such a translation
is performed. It is important to notice that these proofs do not make a statement
about a compiler algorithm or its implementation, but only about the relation of two
programs. Compared to compiler certification, the technique of compilers certifying
their results has three main advantages.

¢ First, the issue of implementation correctness can be completely avoided. We do
not have to trust the implementation of the compiler algorithms on a hardware
system or prove it correct (cp. [6,22,8] on this problem).

¢ Second, similar to the proof carrying code approach ([17,16,1]), the technique
provides a clear interface between compiler producer and user. In the certified
compiler approach compiler users need access to the compiler correctness proof to
assure themselves of the correctness. Thus, the compiler producer has to reveal
the internal details of the compiler whereas the translation certificates can be
independent of compiler implementation details.

e Furthermore, this abstraction from implementation details frees us from reveri-
fying the compiler once an aspect of implementation changes slightly.

The disadvantages of the certifying compiler approach is that users have to check
the certificates for each (critical) compilation. For large programs this may be very
time consuming. Both the certifying and certified compiler methodologies can be
applied independently to different phases of a compiler.

In this paper, we present a certifying compiler back-end translating an inter-
mediate language into MIPS [20] code. Our original certifying compiler framework
is described in [6,8]. Based on this framework our certifying compiler back-end
comprises the following features:

e Machine-checkability and independence of logic: All certificates generated are
machine-checkable using a theorem prover based on a formal general logic. This
logic is independent of languages and techniques used in the translation. In this
paper we use the Coq theorem prover [24] to specify our notion of compilation
correctness and for checking the generated certificates.

¢ Semantics of involved languages and their correspondence: We require an explicit
formally specified semantics of intermediate language and MIPS code and an
explicit criterion stating correctness of compilation.
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e Certifying compiler: We are using a technique where a special well separated part
of the compiler automatically generates proof scripts as checkable certificates.

e User proved facts: The users of our compiler may provide facts they have proved
on source code level. For example the users may provide the information that a
variable used as an array index never exceeds the bounds of the array. We can
conclude that a register or memory cell that corresponds to this variable in the
MIPS code does not exceed these bounds, too. If this register or memory cell
is used to index the memory corresponding to this array we can safely abandon
bound checks. This is an optional feature if the users do not want to provide
facts (maybe because they do not trust their source code analysis) they do not
have to.

This work ports and improves the certification framework introduced in [6] to the
Coq theorem prover. Compared to the old implementation we have encountered
a great reduction of the run-time for conducting the correctness proofs and are
now presenting a certifying compiler back-end that is able to handle realistically
sized programs. Some of the speed improvement is achieved by using a checker —
a feature that did not appear in our earlier implementation. This is a predicate
formalized in an executable way within the theorem prover. Since we did prove
our checker equivalent to a classical, non-executable specification we use it instead
of the non-executable specification in our generated proof scripts. Furthermore,
we have extended the involved languages to make them more detailed. Our inter-
mediate language consists of arithmetic expressions, (array-)variable assignments,
(un)conditional branches, a print statement, and (potentially recursive) procedure
call and return statements. Our MIPS language comprises basic arithmetic opera-
tions, shift operations, and branch instructions. Instructions for handling outputs
and procedure calls are provided. We simplified the architecture of our certificate
generation resulting in a clear separation between actual code generation and cer-
tificate generation.

Overview of the Paper

We discuss related work in Section 2. The intermediate language, the generated
MIPS machine code as well as the compilation process is described in Section 3.
Intermediate language and MIPS code are related with a notion of semantical corre-
spondence in Section 4. We describe the process of proving correctness of a compiler
run, its automation, and implementation using Coq and the checker in Section 5.
In Section 6 we evaluate our work and a conclusion is drawn in Section 7.

2 Related Work

Apart from our own work [6,22,8] on certifying compilers the following approaches
are most relevant to this paper.

In the translation validation approach [21,2,27] the compiler is regarded as a
black box with at most minor instrumentation. For each compiler run, source
and target program are passed to a separate checking unit comprising an analyzer
generating proofs. These proofs are checked with a proof checker. A translation
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validation approach and implementation for the GNU C compiler is described in [18].
Like in translation validation we regard correctness for each single compiler run.
The analyzer generating the proofs corresponds to our certificate generator. In
contrast to translation validation our approach is based on a general higher-order
proof assistant as checking unit and explicitly formalized semantics. Further on we
use more information to generate the proof scripts from the compiler.

However, a translation validation checker (called validator) has been formally
verified in [25]. Here — like in our work — correctness is based on a formalized
semantics, too. The validator is used for verifying instruction scheduling. It is
generated out of a verified Coq specification.

Credible compilation [23] is an approach for certifying compilers. Credible com-
pilation largely uses instrumentation of the compiler to generate proof scripts. Like
translation validation and in contrast to our work credible compilation is not based
on a explicitly formalized semantics.

Proof carrying code [17] is a framework for guaranteeing that certain require-
ments or properties of a compiled program are met, e.g. type safety or the absence
of stack overflows. While these are necessary conditions that have to be fulfilled
in a correctly compiled program we require in our work a comprehensive notion
of compilation correctness. In [15] a compiler generating certificates for the proof
carrying code approach that guarantees that target programs are type and memory
safe is described. The clear separation between the compilation infrastructure and
the checkable certificate is realized in our approach as well.

A large body of research has been done on certified compilers. Here, we can
only give an overview of the different areas of work. In [14], the algorithms for
a sophisticated multi-phase compiler back-end are proved correct within the Coq
theorem prover. To achieve a trusted implementation of the algorithm, it is exported
directly from the theorem prover to program code. A similar approach based on
Isabelle/HOL is presented in [11]. The verification of an optimization algorithm is
described in [4]; it uses an explicit simulation proof scheme for showing semantical
equivalence. In an important step in the direction of automating the generation of
correct program translation procedures is explained in [13]. A specification language
is described for writing program transformations and their soundness properties.
The properties are verified by an automatic theorem prover.

Important techniques and formalisms for compiler result checkers, decomposition
of compilers, notions of semantical equivalence of source and target program as
well as stack properties were developed in the Verifix project [9,10,26] and in the
ProCoS project [7]. The development of a formally verified compiler for a C subset
is part of the Verisoft project focussing on pervasive formal verification of computer
systems [12].

3 Intermediate Language and MIPS code

In this section we sketch syntax and semantics of our intermediate and MIPS lan-
guage. Both intermediate and MIPS semantics are defined in a small-step opera-
tional way. Hence definitions of syntax are done using abstract datatypes. States
are encoded as tuples and transition rules as state transition functions.
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operand ::=
CONST Z | VAR Z | LOCVAR Z |
ARRAYC (Z x Z) | ARRAYV (Z x Z)

loperand ::=
LVAR Z | LLOCVAR Z |

LARRAYC (Z x Z) | LARRAYV (Z x Z)

ilstatement ::=
ILPLUS (loperand Xx operand x operand) |
ILBRANCH1 (operand x N) |
ILPRINT operand |
ILCALL2 (loperand x N x operand x operand) |
ILRET1 operand |

Fig. 2. Intermediate Language Syntax (excerpt)

ilstate :
(termstate : N, output : list Z, varvals : (Z x Z) = Z, locvarsstack : list ((Z = Z) x N), pc: N)

Fig. 3. Intermediate Language State
3.1 The Intermediate Language

An excerpt of the definition of the intermediate language’s syntax is depicted in Fig-
ure 2. The language comprises arithmetic expressions, (array-)variable assignments,
(un)conditional branches, a print statement for output, and (potentially recursive)
procedure call and return statements. Procedures are lists of statements. Programs
consist of one or more procedures. Intermediate language statements may comprise
operands appearing on the left (loperand) or right side of an assignment. Such
operands comprise local (with respect to a procedure) as well as global variables.
Variables are identified with integers (Z). N denotes natural numbers.

The definition of a state in the intermediate language is show in Figure 3. It is
a tuple consisting of five components: a flag of termination indicating whether the
current procedure has terminated, called another procedure or encountered an error
state. Furthermore, the output occurred so far during the execution of the program
is represented as a list of values. The next component is a mapping from global
variables (including arrays) to values. The fourth component comprises a stack —
formalized as a list — for local variables (including call arguments) and program
counters. The latter ones serve as return addresses. Finally there is a program
counter indicating the next statement to be executed. The semantics is defined
via a state transition function ilnext taking one state and an intermediate language
procedure mapping them to the succeeding state.

3.2 The MIPS Language

Our formalized set of MIPS instructions comprises basic arithmetic operations, shift
operations, and branch instructions. In addition instructions for basic output, pro-
cedure calls and return from a procedure are provided. It should be noted that
some formalized instructions such as instructions for procedure calls are not gen-
uine MIPS instructions. They consist of several real instructions but are handled as
one atomic instruction throughout this paper for simplicity reasons. They encap-
sulate a predefined sequence of MIPS instructions doing work such as storing call
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tistate :
(tltermstate : N, tloutput : list Z, regs : Z = Z,mem : Z = Z, tlpc : N)

Fig. 4. MIPS Code State Definition

arguments in predefined spaces on the stack. As in the intermediate language code
for procedures is stored as lists of instructions. The definition of a MIPS machine’s
state is shown in Figure 4. As in the intermediate language it consists of a flag
indicating termination or other special occurrences and a list of so far accumulated
output. Instead of variable to value mappings it consists of registers and memory
to value mappings. A program counter is part of the MIPS state, too.

The state transition function encapsulating the semantics is called tinext. Our
semantics also needs a state transition function executing several instructions at a
time taking a state, a procedure definition, and the number of states to be executed:
tinextn.

3.8 The Code Generation Algorithm

Our code generation phase comprises four steps. Apart from generating code some
analysis information for generating the correctness proofs are emitted.

In a first step memory locations are determined for local and global variables.
Memory locations for local variables are assigned relatively to a special fixed register
serving as stack pointer.

In the second step register allocation is performed. Some values may be kept at
some program points in registers. Nevertheless our current implementation requires
that there is still one memory location for each variable. One result of these two
steps is a mapping from intermediate language variables to registers and memory
addresses (variable mapping).

In the next step the intermediate language program is processed sequentially and
for each statement one or more MIPS instructions are generated. In our current
implementation this generation is done via standard compiler textbook algorithms.
Hence some simple optimizations are applied to each instruction code sequence
representing an intermediate language statement. Apart from the generated code
a byproduct of this phase is a relation of intermediate language and MIPS code
program points that correspond to each other: the program counter relation.

In a last pass through the MIPS program jump targets are resolved with the
help of this program counter relation. Both the variable mapping and the program
counter relation serve as hints for our certificate generation. The whole compiler is
implemented using the ML programming language.

We have introduced an intermediate language and our formalization of the MIPS
processor instructions in this section as well as the principal code generation. Inte-
gers are formalized in Coq using a possibly non limited bit-wise representation. This
can be limited to 32 or 64 bits depending on the actual MIPS processor the code
is compiled for. For verification purposes integer arithmetics is required to be the
same in intermediate language and MIPS language in our current implementation.
Strings are not explicitly handled in our intermediate language and MIPS code. It
is however possible to encode strings as integer arrays.
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The involved intermediate language was chosen for its closeness to source code
resulting in sequential processing of statements and good readability (see e.g. [5]
for approaches to defining and reasoning about semantics of a more sophisticated
intermediate language). The MIPS processor was chosen because of its simple ar-
chitecture, wide area of usage, and the availability of a simulator. Further language
features such as intricate arithmetic operations can be added easily into our com-
piler. However the focus of this paper is on demonstrating the applicability of the
certifying compiler approach particularly solving the time problems arising with
checking the certificates.

4 Correctness of Compilation: Semantic Correspon-
dence

To verify that a transformation has been conducted correctly one needs to formalize
a notion of correctness. The original and transformed program shall semantical
correspond to each other.

We regard two programs as semantical corresponding if they generate the same
output values in the same order. I.e. they produce the same output traces. For
the conduction of correctness proofs however, it is much more useful to use a more
restricted criterion that implies the equality of observable traces.

In this work we break the task of verifying the compilation of a complete program
down to the verification of its procedures. Hence we regard the correctness of
independently compiled procedures. To guarantee semantical correspondence of
output traces we require the compiled procedures to generate the same output
traces. Furthermore, the target code procedure may only write to the memory
heap (global variables in the intermediate language) or to its own stack frame (local
variables in the intermediate language). Parameters during procedure calls have to
be passed at distinct locations on the stack as are return values from procedure calls.
We require each procedure invoked within a procedure to be correctly compiled
according to these criteria. Global variables of different procedures from the same
program have to be mapped to the same memory locations. The main procedure
is treated like any other procedure in our methodology. With these requirements
on compilation of procedures we guarantee correctness for the compilation of a
complete program.

Formally we require the intermediate language program and the MIPS program
to be in a (weak) simulation relation:

¢ The initial states have to have corresponding values for variables and memory
locations.

¢ For two corresponding intermediate and MIPS states, if there is a next interme-
diate operation, there has to be one or more MIPS instructions and the execution
of these operations has to denote the same output, and calculate the same cor-
responding values i.e. the succeeding states are in the simulation relation again.
During the execution of such a step no violation of stack or other properties may
occur.

Figure 5 shows our simulation criterion comprising the requirements for correctness
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Lemma simulation:
user_provided_facts (optional) —
statecomp s0.il sO_tl Vars MemMap PCRel A
forall s_il s_tl,
statecomp
s_il s.tl Vars MemMap PCRel

—_—
statecomp
(ilnext s_il ilprog)
(tlnextn (steplength s_tl PCRel) s_tl tlprog )
Vars MemMap PCRel.

Fig. 5. Simulation Criterion

of procedure compilation formalized in Coq (slightly simplified). As mentioned in
the introduction when proving it correct optionally facts provided by the user of the
certifying compiler may be used. One can see the requirements on the initial states
s0-il and s0_tl as formalized in the second line of the lemma as well as the simulation
step quantifying over all possible states s_il and s_t/ in intermediate language and
MIPS code.

The statecomp predicate encapsulates the requirements on states as defined by
the simulation relation. It is parametrized with a set of variables (Vars) whose
values shall correspond to the values stored at certain memory (or register) locations
on the MIPS machine, the variable mapping which is encoded using a function
MemMap (cp. Section 3.3), and PCRel: the formalization of the program counter
relation. Note that the correctness of our certificate checks does not depend on these
compiler provided information. If wrong parameters are provided to statecomp the
overall proof check will not succeed since derivation of output equivalence will not
be possible!

Discussion

The methodology presented in this paper allows for a verification that transforms
an intermediate language operation into one or more MIPS instructions. For our
code generation phase such a (1 : n) relation is sufficient and simplifies the proof
process. However in other compiler phases other criteria have to be used (cp. [8]).

In this paper we do not regard stack overflows, but simply assume that they do
not occur. It is possible to abandon this general assumption and provide facts to
the verification process proved on source code level. These might be stating e.g.
that only a certain stack depth occurs during the execution of a program. This
procurement is similar to dealing with array index bounds verification.

The question on when to regard programs as correctly transformed lacks a simple
answer (cp. Section 2) . Different notions may be adequate for different purposes
e.g. a failure of a target program due to resource limitations might be an acceptable
behaviour for some software aimed at running on a large range of different comput-
ers. It is however unacceptable for most cases of embedded systems. With (weak)
simulation allowing us to encapsulate the requirements of the simulation relation
within a predicate like statecomp we believe that our general approach is flexible
enough to be adapted to all criteria commonly used for correctness of compilation.
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5 Proving Correctness of Compilation

In this section we describe our methodology to prove a compilation run correct. We
sketch a general correctness proof first. Secondly we emphasize on the certificates
our compiler generates including their use of checkers. Moreover, we describe the
pieces of software that have to be written for certificate generation.

5.1 Proof Sketch

To prove a code generation run correct we have to show that each intermediate lan-
guage procedure and its compiled MIPS counterpart fulfill the simulation criterion
presented in Figure 5.

First we prove that the initial states of both programs are in the simulation
relation fulfill the statecomp predicate, respectively.

For showing that for each two states fulfilling the statecomp predicate the suc-
ceeding states are in the relation again we make a case distinction on the inter-
mediate languages program counter. To fulfill statecomp it must point to some
intermediate language statement. Furthermore, the MIPS program counter has to
point to a corresponding MIPS program point and the program counter relation
has to indicate the exact number of corresponding MIPS instructions. We make a
case distinction on all possible intermediate language statements. Hence we split
intermediate language and MIPS code into corresponding slices which have to se-
mantical correspond to each other. For each corresponding pair of slices we prove
in Coq a separate lemma that they compute equivalent values, store them at equiv-
alent locations, reach equivalent program points, call equivalent procedures with
equivalent parameters, return equivalent values or produce equivalent outputs.

Of course a typical MIPS program may compute a lot of intermediate values that
do not appear in the intermediate language. We handle this by requiring only values
of variables appearing in the intermediate language procedure and the appropriate
memory locations to correspond to each other.

To prove such a single step correct we require a number of prerequisites. Various
properties concerning the mapping from variables to memory have to be ensured in
a first phase.

The step lemmata realizing the case distinction on the intermediate languages
program points are done in a second phase. Finally it is all put together in a third
phase proving the simulation criterion (cp. Figure 5).

This case distinction on program points of the given programs is the key to
proving the equivalence of intermediate language program and MIPS program. It
should be noted that proving such a step correct is not a direct execution of certain
instructions in certain states since the variables/registers/memory values in such
states are not fixed. It is the deduction of an abstract successor state from another
abstract state with the rules defining the semantics as introduced in Section 3.
Hence this procurement lifts the dynamic nature of trace based semantics to a
static view enhancing the possibility to reason about possibly infinite state systems
in a theorem prover.
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Fig. 6. Overview of Our Certifying Code Generation

5.2  Generating and Proving Certificates

Figure 6 shows our certifying code generation infrastructure. The actual code gen-
eration takes an intermediate language procedure and produces MIPS code. Fur-
thermore, as pointed out in Section 3.3 a set of variables used in the intermediate
language, a variable mapping mapping variables to memory locations and a program
counter relation is emitted. These are subsumed to info in the Figure. It should be
noted that when performing complicated optimizations in a compiler phase it is very
helpful to emit optimization relevant information such as analysis results among the
other info items. Coq representations of intermediate language and MIPS code are
created for the compiled procedure. Based on these information the certificate gen-
erator generates the proof scripts proving the semantical correspondence between
intermediate language and MIPS code. Finally the theorem prover is invoked to
process the proof scripts. The theorem prover does this by using the formalized
semantics and notions of correctness as well as derived lemmata and formalizations
such as our checker. Thus it conducts the correctness of compilation. Facts proved
on source code level may be used for this process. As with proof carrying code one
might imagine scenarios in which it is advantageous to keep the proof script so that
other people using the program can be convinced that they have indeed a correctly
compiled procedure with respect to a piece of source code.

The certificate generator emits several proof scripts that depend on each other.
As described in Section 5.2 the processing of these scripts by the theorem prover
is structured in three phases as is their generation: mapping function properties
in a first phase. In a second phase lemmata proving the correctness of symbolic
execution steps. The third phase verifies our simulation criterion.

5.8  Proving the Mapping Function Properties

Crucial to our proofs is the fact that the variable mapping is injective: If we change
a variable and a corresponding memory cell no other variable’s memory cell is
altered. For local variables the proof is done with locations relative to a stack
pointer. Apart from the injectivity proof additional characteristics of the variable
mapping are proved in the first phase, too.

For example it is vital for the verification of operations involving dynamic array
accesses that the following holds:

the address of a[i] is the address of a]0] +4 % i (4 is the integer width)
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check_inj’ MemMap | max =
match | with
| nil => true
1 cons x | =>
et im := MemMap x in
if (is_greater im max) then check_inj’ | im
else false
end.
check_inj MemMap | =
match | with
| nil => true
| cons x | => check_inj’ MemMap | (MemMap x)
end.

Fig. 7. Injectivity Checker

Mapping function properties only have to be recomputed if the layout of the variable
mapping changes. Furthermore, it is possible although not yet implemented to
partially reuse the proofs for old variable mappings when additional variables are
added and the mapping for the old variables does not change.

5.4 A Fast Injectivity Proof using a Checker

In the current implementation the injectivity proof is done by using a checker.

The general idea behind the technique described in this subsection is the fact
that functions formalized in an executable way in Coq may be evaluated very fast.
Other steps involving unification or rewriting of terms are considerably slower. Thus
we want to keep as much executable as possible. Instead of verifying a proof goal
with respect to some declarative correctness notion directly using traditional higher
order theorem proving techniques we implement a predicate in Coq that computes
whether the proof goal holds. The predicate has to be proved correct with respect
to the original declarative correctness notion. This is done once and for all. Thus
we can now reuse the executable predicate instead of the declarative correctness
notion in any proof script produced by our certifying code generation phase.

A simple checker for an injectivity proof is shown in Figure 7. Two functions
used for a fast computation of the injectivity of a variable mapping are presented.
Both take a function realizing the variable mapping and a list of variables as inputs.
The first function takes an additional max argument as input. It checks whether
all variables in the list of memory addresses that are sufficiently larger than the
address the previous element is mapped to. The second function is initially called
and sets the value of max to the address of the first variable in the list. To use this
function in our proofs we have proved that whenever a variable mapping fulfills this
check_inj predicate with respect to a list of variables than it is indeed injective with
respect to the list.

The algorithm realized by the check_inj predicate is the same in an earlier, non-
checker based approach. However, traditional theorem proving formalizes each re-
cursive application of the checker as at least one distinct lemma. To derive the
lemma that if injectivity holds for one recursive application it will hold for the next
if the addresses are mapped appropriate several unification steps are necessary.

The max does represent a single address value. It can be used with or without
respect to an offset register. The is_greater is implemented appropriate. In our
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Lemma stepl4
forall varvals regs mem outp locvarstack,
.. assumptions/facts ... — >
statecomp
(mkilstate O outp varvals locvarstack 14)
(mktlstate O outp regs mem 64)
Vars MemMap pcrel
- >
statecomp
(ilnext (mkilstate 0 outp varvals locvarstack 14) ilprog)
(tlnextn (mktlstate O outp regs mem 64) tlprog 3)
Vars MemMap pcrel.

Fig. 8. Lemma for one Symbolic Execution Step

Intermediate Language Statement
ILPLUS (LVAR 42,VAR 42,CONST 1) [42]:=[42] + 1

MIPS Code

LOAD 8 268500992 register 8 := value_at (268500992)
ADD 881 register 8 := register 8 4+ 1
STORE 8 268500992 addr_at (268500992) := register 8

Fig. 9. Corresponding Code Pieces

implementation it is also used to relate registers and memory addresses to each
other.

We have proved our implemented injectivity checker correct in Coq with respect
to the original injectivity specification.

5.5  Proving Symbolic Execution Steps

The second phase realizes the case distinction on all possible intermediate language
statements. For each corresponding pair of intermediate language statement and
MIPS instructions we generate and check a separate lemma that the requirements
of the statecomp (cp. Section 4) predicate are preserved during the state transition.
Before unfolding statecomp and checking that its requirements are fulfilled we com-
pute a symbolic representation of the states to be reached via the current execution
step. A single symbolic representation of these states in Coq is crucial for easing
the complexity of the proof scripts.

A typical lemma formalizing the correctness of one symbolic execution step is
shown in Figure 8. As described in Section 3 evalstatement and evalNinstructions
are state transition functions. It differs from the simulation criterion in the way
that program points and the number of steps to be executed in the MIPS code are
initialized with concrete values.

Figure 9 shows the corresponding code pieces that are proved to fulfill the sim-
ulation requirements. A global variable [42] is increased by one. 268500992 is the
address it is mapped to. Checking the scripts generated in the second phase can
be carried out in parallel since no step lemma depends on another.

5.6 Proving the Simulation Criterion

In the third phase we prove that the simulation criterion from Figure 5 is fulfilled.
The correspondence of initial states can be done by simply unfolding the statecomp
predicate.

12



J. O. BLECH AND B. GREGOIRE

The generated script for the simulation step makes a case distinction on all possible
program points of the intermediate language procedure. Each execution step from
such a program point is proved correct by using the appropriate lemma from the
second phase.

We showed that the proof can be split up in three phases. While the first phase
proves a global property holding for the complete program the second phase proves
independent lemmata for each intermediate language statement. The third phase
finally proves our simulation criterion correct. Apart from that we use lemmata
proved independently of concrete programs to speed operations up.

6 Evaluation of our Work

In this section we evaluate our certifying code generation phase. We focus on the
generated proofs and especially the time it takes to check the proofs. In a previous
work [6] it turned out that this is by far the bottleneck of our certifying compilers.

The table shows the time? it takes to prove the code generation of different
programs correct. It shows the number of variables occurring in the program
(counting array elements as single variables). The length of the original interme-
diate program (IL length) as well as the length of the generated MIPS code (TL
length). In the last three columns the time it takes to check the proofs for the
three different phases is shown.

’ program ‘ no. variables ‘ IL length ‘ TL length ‘ phasel ‘ phase2 ‘ phase3 ‘

sortl 1008 16 67 3s 5s 1s
sortla 2008 16 67 6s 5s 1s
sort1lb 3008 16 67 10s 5s 1s
sortlc 4008 16 67 15s 5s 1s
sort1ld 5008 16 67 22s 5s 1s
arithl 16 177 705 1s 38s 13s
arith2 18 353 1409 1s 1m 53s 46s
arraysl 2030 520 2059 5s 4m 25s | 1m 34s
arrays2 2030 1030 4107 5s | 14m 47s | 6m 24s

The sort procedures sort arrays from 1000 (sort1) up to 5000 (sortlc) elements. The
arith procedures mostly contain arithmetic operations while the arrays procedures
perform operations on differently sized arrays. With procedures reaching several
hundred lines of code the time it takes to check the proofs is increasing faster than
linear. This is due to the larger data structures which have to be handled during the
proof process. Accesses to these structures grow linear with code size however since
the structures themselves are growing linear we end up with a time that is growing
quadratic. Compared to the Isabelle/HOL [19] (2005) implementation of [6] we
are able to handle much larger programs. Verification times from several hours up
to several days where typical for programs between 100 and 200 lines of code and
up to 200 variables. We also proclaimed quadratic time behaviour in the second
phase since each proof for a single step lemma would grow linear with the size
of the program due to the look up of statements, instructions, variable, memory

4 Experiments conducted on Intel Core 2 Duo machine with 2.16 GHz using one core and Coq Version 8.1.
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and program counter correspondences from list like data structures. These look up
operations were carried out in the Isabelle/HOL theorem prover mostly by unfolding
the definition of a look up function and matching axioms describing the semantics of
such a function against the definition and the data structure containing the data to
be looked up. In Coq we are able to execute look up function definitions directly in
the Coq environment. Hence the look up operations which where the bottleneck in
our Isabelle implementation are not critical in our Coq implementation any more.
The use of the checker has speeded the first phase up by a factor slightly larger
than 100 compared to a Coq implementation without a checker. Due to an artifact
in the Coq implementation the time the third phase takes grows larger than linear
with the size of the program code. In the table at hand we used explicit proof terms
for conducting the third phase. We do have however a version with linear growing
time in the third phase which is slightly slower for the last line in the table °.

Furthermore, the trusted computing base is not enlarged by using Coq instead
of Isabelle and adding a checker to the Coq implementation.

Compared to the time it takes to check the proofs the time the proof generator
takes to generate them and the compiler takes to generate the code is negligible.

The proof generator size is with a few hundred lines of ML code comparable to
its Isabelle/HOL counterpart in [6]. The use of the checker simplifies proof script
generation for the first phase compared to a non-checker implementation. Proof
script generation for the second phase is done by making a case distinction on the
syntactical structure of the involved statement and operations. Each case is treated
independently. It is easy to maintain and extend.

Our implementation and its performance evaluation demonstrates that certifying
code generations is practicable for realistic compiler back-ends. One may not be
willing to use certifying compilation for every compiler run, but at least for compiling
production releases it can be applied. As mentioned in Section 5.2 the time to
conduct the proofs from the first phase can be reduced by preproving common
memory layouts. Time reduction is even easier to achieve for the second phase
since each lemma can be conducted in parallel.

7 Conclusion and Future Work

In this paper we have presented a methodology as well as an implementation of a
certifying code generation phase. We did extend the code generation phase by a
certificate generator producing Coq correctness proofs (certificates) for each com-
piler run. These are proved correct in the Coq system giving us the guarantee that
the compiler has worked correctly. Our correctness criterion is independently of
concrete transformations formalized in a higher order logic. In previous work we
have shown that checking the certificates is the bottleneck in the certifying compiler
approach. We achieved serious results on reducing the speed for certificate check-
ing by switching to the Coq theorem prover and making use of the checker. Coq
and checkers allow us to conduct time critical operations in a native way without
enlarging the trusted computing base. Furthermore, we have extended the involved

5 A Coq implementation without checkers and explicit proof term use is described in [3].
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languages and were able to further simplify our certification architecture. In our
current implementation only minimal instrumentation of the compiler is required
for our code generation phase. Therewith we have demonstrated the feasibility of
the certifying compilation approach for the code generation phase of compilers.
We are currently working on extending the checker approach to the second phase
of our certifying code generation. The goal is to formalize and prove correct a fast
checker that proves the symbolic execution steps. Moreover, in the case that our
checker can not prove a step correct it shall return a list of conditions that need to
be verified. The checked MIPS code may be regarded as a correct translation of the
corresponding piece of intermediate code if these conditions are fulfilled. We believe
that this feature makes the development of the checker in case of future language
extensions more easy. It also allows for some interaction with the users in case
that they provide some preproved facts. Further goals for the near future comprise
language extensions such as pointers and improvement of the other compiler phases.
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