Electronic Notes in Theoretical Computer Science 82 No. 2 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 16 pages

Classifying and Formally Verifying
Integer Constant Folding

Sabine Glesner !

Fakultdt fir Informatik
Universitat Karlsruhe
Karlsruhe, Germany

Jan Olaf Blech 2

Fakultdt fir Informatik
Universitat Karlsruhe
Karlsruhe, Germany

Abstract

Constant folding is a well-known optimization of compilers which evaluates con-
stant expressions already at compile time. Constant folding is valid only if the
results computed by the compiler are exactly the same as the results which would
be computed at run-time by the target machine arithmetic. We classify different
arithmetics by deriving a general condition under which a target-machine arithmetic
can be replaced by a compiler arithmetic. Furthermore, we consider integer arith-
metics as a special case. They can be described by residue class arithmetics. We
show that these arithmetics form a lattice. Using the order relation in this lattice,
we establish a necessary and sufficient criterion under which constant folding can
be done in a residue class arithmetic that is different from the one of the target
machine. Concerning formal verification, we have formalized our proofs in the Is-
abelle/HOL system. As examples, we discuss the Java and C integer arithmetics
and show which compiler arithmetics are valid for constant folding. This discussion
reveals also potential sources of incorrect behavior of C compilers.

Keywords: integer and residue class arithmetic, constant folding, formal
correctness, Isabelle/HOL formalization, Java and C integer arithmetic.

! Email: glesner@ipd.info.uni-karlsruhe.de
2 Email: blech@ipd.info.uni-karlsruhe.de

(©2003 Published by Elsevier Science B. V.

SABINE GLESNER AND JAN OLAF BLECH

1 Introduction

Most programming languages do not specify exactly how arithmetic compu-
tations are performed. Instead they refer implicitly to the built-in arithmetic
of the processor of the target machine. The advantage is better portability
of source programs. Especially integer arithmetic is mostly used for counting
tasks in small ranges which behave accurately as the ring Z of the integer
numbers. The same source program may be translated into machine code for
16- as well as 32- or even 64-bit processors. This situation has implications
on the optimizations allowed in a compiler. Constant folding is a well-known
optimization in the intermediate representation of compilers which evaluates
constant expressions already at compile time. Constant folding is valid only if
the results computed by the compiler are exactly the same as the results which
would be computed at run-time by the target machine arithmetic. In this pa-
per, we classify integer and floating point arithmetics in a general framework.
In particular, we state a sufficient criterion under which a target machine
arithmetic may be replaced by a compiler arithmetic. Moreover, we describe
sufficient and necessary conditions under which a given integer arithmetic may
safely be replaced by some other integer arithmetic. These conditions are ef-
ficiently decidable. We discuss the Java and C integer arithmetics and the
implications on allowed compiler arithmetics with respect to our criterion of
substitutability. Moreover, we present a formal proof of correctness for our
criterion, stated in the Isabelle/HOL system.

As a rather amusing motivation for the importance of the compiler arith-
metic consider the following presumably true story [Poo94]. In 1994, a major
city bank in the UK wanted to find out which of their Pentium processors were
afflicted with the Pentium bug. They compiled a test program and checked
all their Pentium machines with it. Surprisingly, all of them had the bug.
Just to double-check, they also tested their other machines and, even more
surprisingly, discovered that they also showed the Pentium bug. After some
confusion, they came up with this explanation. The compiler did constant
folding, computing the expression intended to reveal the Pentium bug already
at compile time. This compiling processor was a buggy Pentium which hard-
wired the wrong result into the translated machine program. Hence, in turn,
the mistake showed up in each run of the program, independently of the arith-
metic of the executing processor. This story demonstrates that the arithmetic
of the compiler is important and needs to behave exactly as the arithmetic of
the target machine in order to guarantee that the optimized target program
behaves exactly as the unoptimized target program would do.

With our results in this paper, we introduce a general framework for the
substitutability relation between arithmetics. We specialize this general set-
ting for integer arithmetics, yielding an efficiently decidable criterion for sub-
stitutability between different integer arithmetics. In section 2, we recall some
notations and results from universal and abstract algebra. In section 3, we

2

SABINE GLESNER AND JAN OLAF BLECH

present our general framework for the substitutability relation among arith-
metics. We consider integer arithmetics in section 4 and show that they can
be arranged in a lattice. This lattice is isomorphic to the dual lattice of con-
gruence relations of the ring Z of integer numbers. This classification gives us
a necessary and sufficient criterion of substitutability between integer arith-
metics, expressed by certain intuitive divisor properties. We discuss the integer
arithmetics of Java and C in section 5 and show how they can be classified with
our schema. This discussion reveals in particular the fundamental difference
between Java and C arithmetics. In Java, the results of arithmetic expres-
sions are determined by the Java semantics. In C programs, the results of
arithmetic expressions are defined in terms of the target machine arithmetic.
In section 6, we describe our Isabelle/HOL formalization. We discuss related
work in section 7. In section 8, we conclude with aspects of future work.

2 Foundations

Ideally one may think of integer and floating-point arithmetics in programming
languages as being equal to the ring Z of the integer numbers or to the field
R of real numbers. Nevertheless, reality is different as nearly all arithmetics
in programming languages are implemented by the available arithmetic oper-
ations of the target processor. These operations are defined only for a finite
number of possible input values and, hence, differ from Z or R. We describe
these processor arithmetics as well as Z and R as universal algebras. This gen-
eral setting allows us to view all of these arithmetics in a unified framework.
In this section, we recall some standard notations and results from classical
and universal algebra. For more details or proofs cf. [Lan79,Ihr88,BS00].

2.1 Universal Algebras

Definition 2.1 [Operations| For each n € INU {0} and each nonempty set
A, a mapping f : A" — A is called n-ary operation on A. n is called the
arity of f. The set of all n-ary operations on A is denoted by Op,,(A). o

Definition 2.2 [Type of Algebras| A type of algebras is a set F of function
symbols such that a nonnegative integer n € IN U {0} is assigned to each
function symbol f € F. n is the arity of f, f is an n-ary function symbol. ©

Definition 2.3 [Universal Algebra] A wuniversal algebra A of type F is an
ordered pair A = (A, F) where A is a nonempty set and F' = (f4 | f € F)
is a family of operations of finite arity on A. Thereby an n-ary operation
fa € Op,(A) is assigned to each n-ary function symbol f € F. A is called the
universe of A = (A, F'). The elements in F' are the fundamental operations of
A It F={f,..., fr} is finite, we write (A, fi,..., fx) for (A, F). o

Throughout this paper, we write f instead of f4 whenever this simplifica-
tion is unambiguous.

SABINE GLESNER AND JAN OLAF BLECH

Example 2.4 [Groups and Rings| Classical examples of algebras are groups
and rings. A group is an algebra G = (G,-,7',1) in which the following
identities are true: (Abelian groups satisfy also commutativity: =z -y =y - x.)
x-(y-2z)=(r-y)-z (associativity) e-x=z-e=2x (neutral element)
r-z ' =272 =e (inverse elements)
A ringis an algebra (R, 4+, —, 0,) where + and - are binary operations, — is
a unary and 0 is a nullary operation. A ring satisfies the following conditions:
(R,+,—,0) is an abelian group. - is an associative operation, and the two
distributivity laws are fulfilled:
z-(y+tz)=(@-y+(@-2z) and (z+y)-z=(2-2)+(y-2) N

Given a set of variables V' and a type of algebras F, the set of terms
T(F,V) is defined inductively as usual: All variables v € V are terms. If f is
an n-ary function symbol and t;, ..., t, are terms, then f(¢y,...,%,) is a term.

Definition 2.5 Let F be a type of algebras and V' be a set of variables. The
term algebra 7 (V') of type F over the set of variables V' is the algebra 7 (V') =
(I'(F,V),F) such that for each f € F, fro,(ti,...,tn) = f(t1,...,tn). o

2.2 Homomorphisms

Definition 2.6 [Homomorphism] Let A and B be two algebras of the same
type F. A mapping a : A — B is called a homomorphism from A to B if
alfalar,...,a,)) = fela(ar),...,ala,)). The kernel of «, ker(«), is defined
by ker(a) = {(a,d’) | a,d’ € AN afa) = a(d)}. o

Theorem 2.7 (Concatenation) Let « : A — B and § : B — C be
homomorphisms from A to B and from B to C. Then the concatenation of «
and 3, Boa, with foa(a) = f(ala)) fora € A, is also a homomorphism. <

Example 2.8 [Modulo-Arithmetic Z,, of Z] Consider the modulo-arithmetic
Zy in Z, Z, = {0,1,...,n — 1}. Addition is defined as follows: = +7, y =
(x +7 y)mod n. If z € Z,, then —x = n —z x. x —z, y is an abbreviation
for x +7, (—z,y). Multiplication is defined analogously. (+z and —z denote
addition and subtraction in Z, resp.) It is easy to verify that f : Z — Z,
with f(x) = x mod n is a homomorphism from Z to Z,. |

2.3 Congruence Relations and Quotient Algebras

Definition 2.9 A congruence relation 6 on the algebra A = (A, F) is an
equivalence relation on A such that for all f € F, if f n-ary and if (¢;,t) € 0,
1 <i < mn, then (f(t1,...,tn), f(t},..., 1)) € 0. The set of all congruence
classes is denoted by A/6, the congruence class containing a by a/#. o

Theorem 2.10 Let a« : A — B be a homomorphism from A to B. Then
ker(«) is a congruence relation on A. o

4

SABINE GLESNER AND JAN OLAF BLECH

Definition 2.11 [Quotient Algebras| Let A = (A, F') be an algebra and 6 be
a congruence relation on A. The quotient algebra of A by 6, denoted A/0, is
the algebra whose universe is A/ and whose fundamental operations satisfy:

fajp(ar/0,...,a,/0) = falar,... a,)/0. o

Example 2.12 [Residue Classes of Z| The elements of Z,, = {0,1,...,n—1}
can be viewed as standard representatives of the residue classes nZ+r, 0 < r <

nZ nZ+1 nZ+2 w. | nZ+(n-2) | nZ+(n-1)
-2n| -2n+1| -2n+2| .. -n-2 -n-1
-n -n+1 -n+2 -2 -1 standard
&~ representatives
0 1 2 n-2 n-1
n n+1 n+2 2n-2 2n-1
2n 2n+1 2n+2 3n-2 3n-1

Fig. 1. Residue Classes of Z

n—1, of Z, cf. figure 1. The residue classes are defined as follows (for arbitrary
but fixed n > 1 and all r with0 <r <n—1): nZ+r ={zx € Z | z mod n = r}.
These residue classes are the congruence classes of the congruence relation
0, on Z: z6,y iff x mod n = y mod n. Clearly, 6, is an equivalence relation
on 7Z because it is reflexive, symmetric, and transitive. Moreover, it is a
congruence relation because it is closed under the operations 47, , —z, , and
-7, Hence, we conclude that Z/60,, = Z, is an algebra with well-defined
operations as specified in definition 2.11. One can show that Z,, is a ring (by
Birkhoff’s theorem about equational classes being varieties and vice versa).
Ideals J of rings (R,+,—,0,-) are subsets of R. In commutative rings,
they are defined by three properties: 0 € J; z,y € J = x+y € J; and
xr € Jae R=a-x¢eJ. Each ideal is the kernel of a homomorphism, and,
vice versa, each kernel of a homomorphism is an ideal. Furthermore, in Z, the
ideals are exactly the congruence classes nZ for n € N*, [|

An important result from universal algebra states that the congruence
relations of an algebra are a lattice (cf. [BS00]). We use this result when
classifying integer arithmetics in section 4.

Theorem 2.13 Let A be an algebra and let Con A be the set of all congruence
relations of A. The congruence lattice of A, denoted by Con A, is the lattice
whose universe is Con A and meets and joins are calculated as follows:

d 91/\02:91ﬂ92

SABINE GLESNER AND JAN OLAF BLECH

e 01VOy=0,U(01005)U(B100200,)U(O100200,0605)U--- or, equivalently,
(a,b) € 01V 0y iff there is a sequence of elements a = ¢y, ¢a, ..., c, = b such
that (c;, cir1) € 01 or (ci,cip1) € 03 for 1 <i<n—1. o

3 General Classification of Arithmetics

At first sight, one might think that the integer and floating point arithmetics in
programming languages are rings and fields, resp. For the modulo-arithmetic
on integer numbers, this is true. But already for saturating integer arithmetic,
we do not have arithmetic on rings any more. Analogously, floating-point
arithmetic behaves like the arithmetic in a field only as long as no rounding
errors or overflows occur. In this section, we define the notion of arithmetics
and derive the notion of substitutability between algebras. Furthermore, we
define substitutability with respect to one specific constant expression.

Definition 3.1 [Arithmetic] An arithmetic is an algebra A of type F such
that the following function symbols are included in F: +, —,-,0. + and - are
binary function symbols, — is a unary and 0 is a nullary function symbol. ¢

This definition captures the classical arithmetics like Z and R as well as
Z,, saturating integer or floating point arithmetics implemented in micropro-
cessors. We do not require any properties of the fundamental operations of
the algebra as e.g. 0-x = 0. Any algebra of the right type is accepted as
arithmetic. We need to be able to compare arithmetics. Therefore we define
a relation “more precise” which holds for two algebras A and B, denoted by
A = B, if A can be used instead of B to compute a constant expression. With
Type(A), we denote the function symbols which are interpreted by the funda-
mental operations of the algebra A. If Op C Type(A), then we denote with
A |0, the following algebra (A,{fa | f € Type(A) N Op}) which has only a
subset of the fundamental operations of A, those contained in Op.

Definition 3.2 [More Precise | An algebra A = (A, F4) is more precise
than an algebra B = (B, Fj), denoted by A = B, iff

e Type(B) C Type(A) and if

* there exists a surjective homomorphism f : A|opm— B. o

If A > B, then A can be used instead of B to evaluate constant expressions.
To formalize this, we need a formal definition of constant expressions of an
algebra A = (A, F)). We define them as the term algebra of the same type
over the set of “variables” A as 7(A) = (T(Type(A), A), Type(A)). If f :
A — B is a function defined on A, then we can lift this function to f :
7 (A) — T (B) by mapping each a € A to f(a) and each term ga(ty,...,%,) to
g5(f(t1),..., f(t,)). Furthermore, we need an evaluation function eval 4 which
assigns each term ¢t € T'(Type(A), A) an element of A. evaly : T(A) — A s
defined inductively as follows: If t = a for some a € A, then evals(a) = a. If
t=h(ty,...,t,), then eval o(t) = ha(eval4(t1), ..., eval4(t,)).

6

SABINE GLESNER AND JAN OLAF BLECH

Theorem 3.3 (Substitutability) Let A = (A, F4), B = (B, Fg) be alge-
bras, A = B. Let f : Alopm)— B be the corresp. homomorphism from A|opms
to B. Then there exists a function f~' : T(Type(B), B) — T(Type(B), A)
with f(eval o(f~(t))) = evals(t) for all t € T(Type(B), B). o

Proof. First we define a function f~! : B — A lops) which can be lifted
to f~' : T(Type(B), B) — T(Type(B), A). Then we show that f~' has the
desired properties. Define f~!: B — A such that f~1(b) = {a | f(a) = b}.
Because f is surjective (cf. definition 3.2), f~' # 0 for all b € B. Let f~1(b) €
f71(b) (arbitrary but fixed). Then f(f~'(b)) = b holds independently of the
choice of f~1(b) € f~1(b) (follows directly from the definition of f1).

Let t € T(Type(B), B). We show that f(eval4(f~(t))) = evals(t) for all
t € T(Type(B), B) by induction on the term structure of .
Base Case: t = b for some b € B. f(evaly(f~1(b))) = f(evaly(a')) = f(d') =
F(F1(8) = b (with o = £(0).
Induction Case: f(evalA(f_ (h(tl, otn))) =

= f(evalg(h(f~1(t1), . Lt))) (lift f~1 to terms)
= f(h(evalg(f~1(t1)),. evalA(f L(t)))) (definition of eval 4)
= h(f(evala(f~ (tl))) fleval(f~1(tn)))) (f is a homomorphism)
= h(evalg(t1), . evalg()) (induction assumption)
= evalg(h(ty, ... ,tn)) (definition of evalg) O

Theorem 3.3 states directly that whenever A = B, we can evaluate con-
stant expressions in A instead of in B because we have transfer functions
between A and B. Definition 3.2 and theorem 3.3 capture the general case
of substitutability between arithmetics in programming languages and target
processors. They model not only the mathematical arithmetics Z and R but
also the standard modulo-integer arithmetics as well as saturating arithmetics
and floating-point arithmetics. Concerning constant folding, also rare cases
are caught: Consider e.g. a compiler which evaluates constant integer expres-
sions with a floating-point arithmetic. If we can state the transfer functions
f and f~!', we can use the floating-point arithmetic to evaluate the integer
expressions. In practice, one often faces the situation that a constant inte-
ger expression is to be evaluated within one target modulo-arithmetic but
the compiler has only a different modulo-arithmetic. Theorem 3.3 defines the
proof obligations to be verified. Sometimes it is not important to ensure sub-
stitutability between two arithmetics for arbitrary expressions but only for
one specific constant term. This case is described in the following definition:

Definition 3.4 Let A = (A, F4) and B = (B, F) be algebras such that
Type(B) C Type(A). Let t € T(Type(B), B). A is more precise than B with
respect to ¢, denoted by A =; B, if there exists transfer functions f : A — B
and f~!: B — A such that f(evals(f'(t))) = evalg(t). o

If algebra A is more precise than algebra B wrt. a constant term ¢, then
we can evaluate t in A instead of in B with the transfer functions f and f~!.

7

SABINE GLESNER AND JAN OLAF BLECH

4 Lattices of Integer Arithmetics

In this section, we concentrate on residue class arithmetics, i.e. modulo-
arithmetics in Z,, n € N*. These arithmetics are contained in programming
languages typically in two variants, as signed and unsigned integers. Unsigned
integers correspond directly with the set Z,, = {0,1,...n—1}. The arithmeti-
cal operations on unsigned integers are defined exactly as on Z,. Signed inte-
gers represent numbers within the range of {—n/2,...,—1,0,1,...,(n/2)—1},
assuming that n is even, otherwise in the range {—(n—1)/2,...,—1,0,1,...,
(n—1)/2}. If binarily coded in the two’s complement representation, numbers
starting with a ‘1’ represent negative integers, those starting with ‘0’ represent
nonnegative integers.

We can treat both variants, signed and unsigned arithmetics, in a uniform
way. Therefore we regard the numbers {0, 1,...,n — 1} as standard represen-
tatives of the congruence classes nZ +r of Z, 0 < r < n — 1. Furthermore,
we observe that the numbers {—n/2,...,—1,0,1,...,(n/2) — 1}® denote the
same congruence classes whereby nZ + r for r € {(n/2),...,n — 1} is not
represented by its standard representative r but by the representative r — n,
cf. also figure 1. Each modulo-arithmetic Z,, n € N*, is an arithmetic:

Theorem 4.1 Each modulo-arithmetic Z,, of Z, n € N, is an arithmetic of
type F = {+,—,-,0}. o

Proof. Follows directly from definition 3.1. O

Theorem 4.2 (Substitutability of Residue Class Arithmetics) Letm,
n € N*. If n divides m, then Z,, is more precise than Ly, L, = Ly o

Proof. We need to show that the two requirements of definition 3.2 are ful-
filled. The first, Type(Z,) C Type(Zy,), holds trivially.

To verifiy the second requirement, we define a function f : Z,, — Z,, and
show that it is a surjective homomorphism. Let m = p -z n (p exists because

n divides m). Each = € {0,...,m — 1} can be expressed as x = r 471z n
for some [€ {0,...,p— 1} and 0 < r < n — 1. Define f(z) = r. Clearly, f
is surjective because for z € {0,...,n — 1}, f(x) = x holds trivially. Hence,

each element in Z, is the image of at least one element in Z,,. To verify that
f is a homomorphism, we need to prove the following four equations:

L. f(0z,) = 0z, 3. f(-=z,7) = —z,f(x)
2. f(x+z,y) = f(@)+z, fly) 4 flx-z,y) = f(2) 2, [(Y)

The first equation holds trivially, the remaining equations are proven below.
Thereby we assume that x = r+zl-znand y = r'+z0"-zn with 0 < r,v’ <n-—1
and [,I' €{0,...,p—1}.

2. Proof of f(z+z,, v) = f(x) +z, f(y):

fx4z,y) = f((r+zl-zn) 4z, (' +z1' zn)) =

3 For simplicity of notation, we only show the case for n being even.

8

SABINE GLESNER AND JAN OLAF BLECH

= f((r+z, -z, n) +z, (v 42, U 2, n)) (because 0 < z,y < m)
= f(r+z, 7" +z,, L'z, n+z, 1"z, n)

T4z, 1 ifr+z "<n-1

=r+z, 7" = f(z) 4z, f(y)-
T 4z, 7" —z, n otherwise
3. Proof of f(—z,2) = —z, f(z): f(=z,2)=f(m—z2) =
fm=z(r+zlzn))=fm—z(zn)—zr)=flm—zr)=
=fpzn—zr)=f(p—2zl)zntzn—zr)=n—zr=—zr=—z,f(z).
4. Proof of f(z -z, y) = f(2) -z, f(y):
On one hand, we have f(z) -z, f(y) =7z, 7" = (r -z ")mod n. On the other
hand, we have f(z -z, y) = f(r+zl-zn) -z, (" +zU -zn)) = f(r-z,).
reg, v =1"withrzr' =1"-zm+zr" and 0 < r”" <m—1, and (r-z7r")mod n =
" with rzr’ =1"-zn+zr" and 0 < r"” < n—1. Because n divides m, there
exists ¢ such that ¢ -z 1” = [and r”"mod n = r"” which completes the proof.O

Theorem 4.3 7Z is more precise than each Z, with n € NT, 7 = 7Z,.

Proof. Follows directly from the facts about residue classes in Z stated in
examples 2.8 and 2.12. O

Theorem 4.4 (Lattice of Integer Arithmetics) The residue class arith-
metics Z,,, n € NT, and Z with the partial ordering = form a lattice Int_Arith =
({Z}u{Z, | neN"} =) o

Proof. We define inf(Z,,,Z) = Z,, and sup(Z,,Z) = Z according to the state-
ment of theorem 4.3 above. Moreover, we need to show that for any two
arithmetics Z, and Z,,, inf(Z,,Z,,) and sup(Z,,Z,,) exist. Therefore we
prove the following whereby “ged” stands for greatest common divisor and
“lem” for least common multiple.

inf(Z,, Z,) = Zgea(n,m) and sup(Zy,,Zm) = Ziem(n, m)
We only prove the case for inf(Z,,, Z,,) because the case for the supremum
is analogous. Clearly, Z,, = Zgcqa(n, m) and Z,, = Zgeq(n, m). Moreover, there

exists no other Z; with k& > ged(m,n) such that Z, = Z; and Z,, = Zi
because then k cannot divide n and m. O

The top element of the lattice Int_Arith is Z, the bottom element is Z;. The
lattice Int_Arith is a complete lattice because for every subset A of {Z}U{Z, |
n € N*}, Inf(A) and Sup(A) exist. The next theorem states the connection of
Int_Arith with the lattice of congruence relations on Z, Con Z. This theorem
follows from the fact that the residue classes nZ for n € NT are exactly the
ideals on Z, as explained in example 2.12. Each ideal defines a congruence
relation 6, whose congruence classes are nZ +r, 0 < r < n — 1, cf. figure 1,
with nZ 4+ r = {x | « mod n = r}. Vice versa, each congruence relation on 7Z
defines an ideal which is the congruence class containing 0.

Theorem 4.5 The lattice Int_Arith is isomorphic to the dual of the lattice
Con Z of congruence relations on 7Z.

9

SABINE GLESNER AND JAN OLAF BLECH

Proof. Let 6, = {(z,y) | mod n = y mod n}. We define the function
[+ Int_Arith — Con Z with f(Z,) = 6,, and f(Z) = {(z,2) | z € Z} =: 0
(i.e. the congruence relation where only identical integers are equivalent) and
the function f~': Con Z — Int_Arith with f=1(0,,) = Z, and f~'(0) = Z.
Clearly, f and f~! are surjective functions and f~! is the inverse function of
f. We need to show that f is an isomorphism, i.e., Z,, = Z, iff ,, C 6,,.
“=”. Assume %Z,, = Z, and show 0, C 0,:

Assume Z,, = Z,. Then there is a surjective homomorphism f : Z,, — Z,.
Furthermore, the surjective homomorphisms ¢g : Z — Z,, and h : Z — 7,
exist because Z = Z,, and Z = Z,,. h = fog holds. Moreover, ker(g) = 6,, and
ker(h) = 6,,. Assume that (x,y) € 6,, = ker(g) exists but (z,y) € 6, = ker(h).
This is a contradiction because all elements which are mapped to the same
image by ¢ must also be mapped to the same image by f o g = h. Hence,
0,, C 6,, must hold.

“<”: Assume 0, C 0, and show Z,, = Z,:

Assume that 6, C 0,,. To show that Z,, = Z, holds we prove that n divides
m. To prove this, we assume the contrary, n does not divide m, and show that
this results in a contradiction: (m,0) € 6,, but (m,0) ¢ 6,, because n does not
divide m. But this is a contradiction to the assumption that 6,, C 6,,. Hence,
we conclude that n divides m and that Z,, = Z,,. O

From theorem 4.5, it follows directly that the condition stated in theorem
4.2 is not only a sufficient but also a necessary criterion:

Corollary 4.6 Let m, n € N*. n divides m iff Z,, = Z,. o

One might wonder why we did not include the integer operations “mod”
and “div” which are available in many programming languages into the type of
modulo arithmetics when stating theorem 4.1. The following counterexample
shows that under this assumption, we would not be able to prove a criterion
for substitutability similar to that in corollary 4.6: (4 +z, 5) modz,7 = 1 but
(4 42,, 5) modz,,7 =2, and (4 4z, 5) divz,2 =0 but (4 +z,, 5) divz,,2 = 4.

Corollary 4.6 gives us an efficiently decidable criterion for the substitutabil-
ity of an integer arithmetic in a target processor by the integer arithmetic in a
compiler. Constant expressions of the integer arithmetic Z,, can be evaluated
in the integer arithmetic Z,, iff n divides m. In modern processor architec-
tures, n and m are always a power of 2. For them, this criterion states that
constant expressions can be evaluated if the representation of numbers in the
compiler arithmetic is equal or larger than the representation of numbers in
the target processor and if both compute values according to the modulo-
arithmetic (which is not as clear as it may seem, cf. our discussion in the next
section). In the following section, we discuss the C and Java integer arith-
metics and show how this criterion can be applied to classify valid constant
folding optimizations in their compilers. These considerations also reveal that
the C language standard [ISO99] contains some dangerous definitions concern-
ing integer arithmetic.

10

SABINE GLESNER AND JAN OLAF BLECH

Java Integers C Integers

Signed Unsigned Signed Unsigned

long long int | unsigned long long int

long (64-bit) long int unsigned long int
int (32-bit) int unsigned int
short (16-bit) | char (16-bit) short int unsigned short int
byte (8-bit) signed char | unsigned char

Fig. 2. Java and C Integer Data Types

5 Integer Arithmetics in Java and C

The Java language specification defines exactly how integer numbers are rep-
resented and how integer arithmetic expressions are to be evaluated. This is
an important property of Java as this programming language has been de-
signed to be used in distributed applications on the Internet. A Java program
is required to produce the same result independently of the target machine
executing it. In contrast, C (and the majority of widely-used imperative and
object-oriented programming languages) is more sloppy and leaves many im-
portant characteristics open. The intention behind this inaccurate language
specification is clear. The same C programs are supposed to run on a 16-bit,
32-bit, or even 64-bit architecture by instantiating the integer arithmetics of
the source programs with the arithmetic operations built-in in the target pro-
cessor. This leads to much more efficient code because it can use the available
machine operations directly. As long as the integer computations deal only
with numbers being “sufficiently small”, no inconsistencies will arise. In this
sense, the C integer arithmetic is a placeholder which is not defined exactly
by the programming language specification but is only completely instanti-
ated by determining the target machine. In this section, we discuss both C
and Java integer arithmetics. Thereby we show that the C integer arithmetic
bears potential sources of incorrect arithmetic behavior.

Java precisely defines how integers are represented and how integer arith-
metic is to be computed. The values of all signed integers are two’s com-
plement representations of the length as listed in figure 2. Char is the only
unsigned integer type. Its values represent Unicode characters, from ‘\u0000’
to ‘\uffff’; i.e. from 0 to 2'6 — 1. If an integer operator has an operand of type
long, then the other operand is also converted to type long. Otherwise the op-
eration is performed on operands of type int, if necessary shorter operands are
converted into int. The conversion rules are exactly specified, cf. [ESGBO00].

The exact specification of Java integer arithmetic determines exactly the
values of constant integer expressions which are computed by the compiled

11

SABINE GLESNER AND JAN OLAF BLECH

programs, independently of the target machine executing them. They are
computed within the arithmetic Zg, if it is an operation on long integers,
otherwise in Zs,. Recall that two’s complement in Zgy» is only the choice of
non-standard representatives for the congruence classes nZ + r for r > 271,
cf. our explanation at the beginning of section 4. From corollary 4.6, it follows
that we can evaluate constant integer expressions in Java programs already at
compile time iff one of the following two conditions holds:

(i) The expression is to be evaluated in Zgy and the compiler uses an arith-
metic Zy.64, n € NT, or

(i) the expression is to be evaluated in Zgy, and the compiler uses an arith-
metic Zy.32, n € N*.

The C language specification [ISO99] does not define integer values and
integer arithmetic as exactly as the Java specification. We do not give all
details here but discuss only the most important characteristics and their im-
plications on compiler arithmetics. C has two kinds of integer values, signed
and unsigned ones, cf. figure 2. The C language specification defines a header
file <limits.h> which determines the minimum and maximum values repre-
sentable in the respective integer type. A given compiler is supposed to provide
this file such that its specific ranges of integer values contains the ranges deter-
mined in the C specification. The C specification requires that for each signed
integer type, there is a corresponding but different unsigned integer type of the
same size. Values of type integer have the “natural sizes suggested by the ar-
chitecture of the execution environment (large enough to contain any value in
the range Int_Min to Int_Max as defined in the header <limits.h>)" (cf. 6.2.5
of [ISO99]). Unsigned integers represent values in the range of 0,...,2N —1
where N is the length of representation. The header file <limits.h> deter-
mines the minimum range of unsigned integers as 0,...,2" — 1, where N is
8 for char, 16 for short and int, 32 for long int, and 64 for long long int.
For signed integers, the ranges —(2¥-1 —1),...,28"1 — 1 are specified, N
defined as for unsigned integers. E.g. the GNU C compiler [Pro02] redefines
the ranges as —2V=1, ..., 2¥~1 — 1 according to Zy~, with N = 32 for int.

These definitions in the C specification, especially those in <limits.h>,
bear two potential sources of unexpected behavior if constant folding is per-
formed. The first concerns the incomplete specification of the target arith-
metic. If the target architecture adheres exactly to the ranges in <limits.h>,
then arithmetic is not computed according to Z,~ because the element —2V1
does not exist. It remains unclear whether the C specification intended to
require a Zqon_, or a Zon arithmetic. Hence, the compiler arithmetic cannot
evaluate arbitrary integer expressions at compile time. Only those can be
computed for which the requirements stated in definition 3.4 can be verified.
For example, if the integers in the constant expression are very small such that
the distinction between Zo~v_; and Z,~ does not matter, then the expression
can be evaluated. The second source of incorrectness of constant folding arises

12

SABINE GLESNER AND JAN OLAF BLECH

from the fact that the integer ranges can be extended arbitrarily by the target
machine. E.g. it would be conform with the C specification to extend the
ranges such that much more negative than positive numbers are contained.
While this or similar extensions still fit into the residue class setting (we can
choose the representatives of the equivalence classes arbitrarily), it might be-
come a practical problem: The binary representation of integers would not
have the well-known interpretation any more that numbers starting with a ‘1’
are negative and all others are non-negative. Compiler programmers might
not expect non-standard interpretations of the integers. Hence, these allowed
unsual interpretations are a potential source of errors.

6 Formalization in Isabelle/HOL

We have formalized our main result concerning substitutability of integer
arithmetics within the Isabelle/HOL [NPWO02] system. Isabelle is a generic
theorem prover. It can be instantiated with different logics, whereas Is-
abelle/HOL, simply typed higher order logic, is the one most widely used.
Our main result is stated in theorem 4.2 and says that Z,, is more precise
than Z,, if n divides m. If one wants to formally verify a compiler doing in-
teger constant folding, then our Isabelle proof can become part of this overall
correctness proof. Our Isabelle proof is generic as it does not instantiate the
numbers n and m. In this section, we explain the main data structures and
proof steps of our Isabelle formalization. An Isabelle proof document con-
tains data type definitions, function and constant definitions and lemmata. A
lemma can be verified by applying certain proof techniques as e.g. induction,
case distinction, or the application of already verified lemmata.

We have modelled constant expressions as trees:

datatype Etree = Leaf int | Node operator Etree Etree

datatype operator = Add | Sub | Mult
We have defined functions which evaluate constant expression trees. The
function calc evaluates trees within the ring Z of the integer numbers. calecm
evaluates in the arithmetic of Z,, and calecmn in Z,,.,. We give here only the
definitions for calc and calem. calemn is analogously defined.

consts consts

calc :: "Etree = int” calem :: " FEtree = int = int”

primrec primrec

"calc (Leaf a) = a” "calem (Leaf a) m = a mod m”

"calc (Node ox a b) = (case ox of "calem (Node ox a b) m = (case ox of

Add = (cale a) + (calc b)| Add = (((calem a m) + (calem b m))mod m)|
Sub = (cale a) — (cale b)| Sub = (((calem a m) — (calem b m))mod m)|
Mult = (calc a) * (calc b))” Mult = (((calem a m) * (calem b m))mod m))”

13

SABINE GLESNER AND JAN OLAF BLECH

Our first lemma states that results of operations in Z mod m are the same
as taking the operands mod m and then computing the result in Z,,.

lemma "(calc a)mod m = (calem a (m :: int))”
The lemma can be verified by induction on a, "apply (induct_tac a)”. Isabelle
creates these proof obligations:

1. A\int. cale (Leaf int)mod m = calem (Leaf int)

2. \ operator Etreel Etree2.

[|cale Etreel mod m = calem Etreel m;

calc Etree2 mod m = calem Etree2 ml]

calc (Node operator Etreel Etree2)mod m =

calem (Node operator Etreel Etree2) m
The base case of the induction can be verified directly using the definitions of
calc and calem. Isabelle does this step automatically by using the tactic "apply
auto”. The remaining proof obligations can be verified by a case distinction
over the possible operators. First we pick the Add-operator and start a case
distinction, "apply (case_tac "operator = Add")". Isabelle produces this result
(we omit the other case "operator # Add” for space reasons):

)\ Etreel Etree2.

[|cale Etreel mod m = calem Etreel m;

calc Etree2 mod m = calem Etree2 m)]

= (calc Etreel + calc Etree2)mod m =

(calem Etreel m + calem Etree2 m)mod m
The following lemma (available in Isabelle) is used in the next proof step:

lemma "(a + b)mod m = (a mod m + b mod m)mod (m :: int)"
Isabelle can completely prove this remaining proof obligation automatically.
The two other cases are slightly more complicated because lemmata as the
one used above need to be proved before. We have also verified that calem
can be replaced by calecmn.

7 Related Work

Correctness of compilers has been investigated in many research projects. Nev-
ertheless, as to the authors’ knowledge, there has been no research investigat-
ing and classifying different arithmetics with respect to their substitutability
(except for the general requirement that the translated programs must show
the same behavior as the source programs). A very early research considering
correctness of compiling arithmetics is [MP67] which verifies the translation
of arithmetic expressions into machine code, but without paying attention to
the fact that the source and target arithmetic may be different.

The german Verifix project [GZ99] has the goal of constructing correct
compilers. This project has achieved progress by establishing the claim that
it is possible to build provably correct compilers within the standard frame-
work of compiler construction. In [Nec00], it is shown how some backend
optimizations of the GCC can be validated. Proof-carrying code [NL9§] is

14

SABINE GLESNER AND JAN OLAF BLECH

another weaker approach to the construction of correct compilers which guar-
antees that the generated code fulfills certain necessary correctness conditions.
Pnueli [PSS98,ZPL01] also addresses the problem of constructing correct com-
pilers. [GGB02] investigates verification of compiler optimizations specific for
embedded processors. None of these works addresses the problem of dealing
with different arithmetics in programming languages and their compilers. In
particular, none of these works establishes a general substitutability criterion
between different arithmetics.

8 Conclusions

In this paper, we have stated a general sufficient criterion for substitutabil-
ity of arithmetics. Therefore we defined arithmetics as universal algebras of
certain types. Our substitutability criterion defines an order relation on the
arithmetics. Concerning integer arithmetics, we have shown that the residue
class arithmetics form a lattice which is isomorphic to the dual lattice of the
congruence relations of Z. This characterization has given us a sufficient and
necessary criterion for substitutability. We discussed and compared the integer
arithmetics of Java and C. Their characteristics display the different intentions
and purposes for using Java or C as implementation language. Java is designed
for distributed applications on the internet. Java program behavior must be
uniquely determined independently of the executing machine. In contrast,
C is often used for system implementations close to the machine code level.
These C programs must be as efficient as possible and therefore use the avail-
able machine arithmetic. Hence, in C, the arithmetic operations are not fully
specified and serve as a placeholder for various machine arithmetics. We have
argued that this incomplete specification of C integer arithmetic is a potential
source of incorrect compiler behavior. Nevertheless, our results state a simple
criterion for substitutability and may help in reducing compiler mistakes. We
have formalized our criterion for substitutability of integer arithmetics in the
Isabelle/HOL system, an interactive higher-order theorem prover. This proof
is generic as it does not specify the absolute sizes of the involved integer arith-
metics. This formal proof may become part of a formal proof of correctness
of a compiler performing constant folding.

In future work, we want to investigate further arithmetics as e.g. saturating
integer arithmetic. Saturating arithmetic is not a ring any more but still an
arithmetic in the sense of our formalization. We also want to consider floating-
point arithmetics. It is an open question if there are different floating-point
arithmetics being in the substitutability relation. Most probably we need to
widen our definition of substitutability and parameterize it with the relative
size of rounding errors to classify floating-point arithmetics adequately.

15

SABINE GLESNER AND JAN OLAF BLECH
References

[BS00] Stanley Burris and H.P. Sankappanavar. A Course in Universal Algebra,
2000. Millenium Edition. Originally published by Springer in 1981.

[ESGBO00] Bill Joy (Editor), Guy Steele, James Gosling, and Gilad Bracha. The
Java Language Specification, Second Edition. Addison-Wesley, 2000.

[GGBO2] Sabine Glesner, Rubino Geifl, and Boris Boesler. Verified Code
Generation for Embedded Systems. In Proc. COCV-Workshop, 2002.
Electronic Notes in Theoretical Computer Science (ENTCS), Vol. 65.2.

[GZ99] Gerhard Goos and Wolf Zimmermann. Verification of Compilers. In
Correct System Design. Springer-Verlag, LNCS 1710, 1999.

[Thr88] Thomas IThringer. Allgemeine Algebra. Teubner, 1988.

[ISO99] ISO/IEC. Int’l Standard ISO/IEC 9899:1999, Programming languages —
C. Ref. no. ISO/IEC 9899:1999(E), 1999. 2nd edition 1999-12-01.

[Lan79] S. Lang. Algebraische Strukturen. Vandenhoeck und Ruprecht, 1979.

[MP67] John McCarthy and J. Painter. Correctness of a compiler for arithmetic
expressions. In Mathematical Aspects of Computer Science, Proc. Symp.
i Appl. Math., Am. Math. Soc., 1967.

[Nec00] George C. Necula. Translation Validation for an Optimizing Compiler.
In Proceedings PLDI 00, 2000.

[NL98] George C. Necula and Peter Lee. The Design and Implementation of a
Certifying Compiler. In Proc. PLDI’98, 1998.

[INPWO02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Springer, LNCS 2283, 2002.

[Po094] Martin Poole. Problems with compiler optimisation (Pentium
related). Forum on Risks to the Public in Computers and
Related Systems, Volume 16: Issue 63, 1994. available at

http://catless.ncl.ac.uk/Risks/16.63.html#subj8.

[Pro02] GNU Project. GCC Home Page. http://gcc.gnu.org/, 2002. Version gcc
version 2.96 20000731 (Red Hat Linux 7.1 2.96-98).

[PSS98] A. Pnueli, O. Shtrichman, and M. Siegel. The code validation tool (cvt.).
Int’l Journal Software Tools for Technology Transfer, 2(2):192-201, 1998.

[ZPLO1] L. Zuck, A. Pnueli, and R. Leviathan. Validation of Optimizing
Compilers. Technical Report MCS01-12, Faculty of Mathematics and
Computer Science, The Weizmann Institute of Science, August 2001.

16

