
Towards Modeling and Checking the Spatial and Interaction Behavior of

Widely Distributed Systems

Jan Olaf Blech and Heinz Schmidt
RMIT University

Melbourne, Australia

Abstract

In this paper, we present work and ideas towards a
framework for modeling and checking behavior of spa-
tially distributed component systems. Components
can communicate and interact with each other and
show external spatial and communication behavior.
For example, a car driving on a road and communicat-
ing with other cars can be modeled as a component.
Our framework aims at checking of behavioral proper-
ties like collision detection using verification tools. We
present examples related to cyber-physical systems as
a motivation for our work.

1 Introduction

Different techniques have been introduced for model-
ing and checking of cyber-physical systems and their
properties. These comprise various means for model-
ing cyber-physical systems like differential equations,
automata and different notions of time like continuos
or discrete time. Based on these modeling approaches
tools for checking properties have been developed.

On the other hand, the software engineering com-
munity has been studying the design and architecture
of component based systems for decades. Specification
formalisms like automata and message sequence charts
are frequently used to describe expected behavior of
systems. Different means for checking these specifica-
tions are available.

In this work, we motivate work towards a unified ap-
proach to cyber-physical systems and component based
software development. We motivate a new framework
that aims at a seamless specification process for spatial
cyber-physical behavior and communication and in-
teraction behavior between different components. We
present work towards a framework that is especially
suited for large scale widely distributed systems like

cars driving on a road network. Several components
may be distributed over a large space and have distinct
features of communication, spatial and internal behav-
ioral aspects. The second part of this work proposes a
process for checking properties of our models. A goal
is to enable the handling and checking of properties of
large models in a highly parallel fashion. A medium
term goal is the possibility to process our models in
a cloud based environment and offer services around
them.

We study modeling and verification scenarios which
are characterized by a discrete notion of time that fea-
tures timestamps. Timestamps are partially ordered.
This allows for the modelling of synchronous and asyn-
chronous systems with distinct synchronisation points
between different components. Technically our ap-
proach is aimed at handling models and checking their
properties in a highly parallel environment based on
cloud-infrastructure.

Overview We present related work in Section 2. Our
motivating and guiding examples are presented in Sec-
tion 3. The methodology for modeling our systems is
motivated in Section 4 and the principles of checking
properties are described in Section 5. A discussion on
future work and a conclusion is featured in Section 6.

2 Related Work

Work that is relevant to this paper has been done in
areas like formal methods, hybrid-systems, software en-
gineering and robotics.

A process algebra like formalism for describing and
reasoning about spatial behavior has been introduced
in [8] and [9]. Process algebras come with a clear and
formal semantics definition and are aimed towards the
specification of highly parallel systems. Here, disjoint

1



Improving Systems and Software Engineering Conference incorporating
SEPGSM Asia-Pacific Conference 2013

Melbourne, September, 2013

logical spaces are represented in terms of expressions
by bracketing structures and carry or exchange concur-
rent processes. For results on spatial interpretations
see, e.g., [15]. Many aspects of spatial logic are in gen-
eral undecidable. A quantifier-free rational fragment of
ambient logic (corresponding to regular language con-
straints), however, has been shown to be decidable in
[29].

Special modal logics for spatial-temporal reasoning
go back to the seventies. The Region Connection Cal-
culus (RCC) [3] includes spatial predicates of separa-
tion. For example RCC features predicates indicating
that regions do not share points at all, points on the
boundary of regions are shared, internal contact where
one region is included and touches on the boundary
of another from inside, proper overlap of regions, and
proper inclusion. In addition [3] features an overview
of the relation of these logics to various Kripke-style
modal logics, reductions of RCC-style fragments to a
minimal number of topological predicates, their rela-
tionship to interval-temporal logics and decidability.

The area of hybrid systems has seen the develop-
ment of different tools for reasoning and verification.
SpaceEx [21] allows the modeling of continuos hybrid
systems based on hybrid automata. It can be used for
computing overapproximations of the space occupied
by a moving – in time and space – object. Addition-
ally, it is possible to model spatial behavior in more
general purpose oriented verification tools in Hybrid
systems (e.g., [24]).

The notion of time and component interaction used
in this paper is compatible with the petri nets induced
notion. This is used, e.g., in the BIP framework [2] for
modeling of distributed asynchronous systems. Invari-
ants are used as an intermediate step for verification in
the BIP context [4]. Invariants are also a key interme-
diate representation of components in this work.

Related to our work is the work on path planning
for robots (e.g., [17, 18]). In our work, however, we are
concentrating on checking existing properties of sys-
tems rather than optimization or discovery of new pos-
sible paths. Collision detection for robots in combina-
tion with motion planning has been studied for a long
time, see, e.g., [16] and [10]. Strongly related to motion
planning is the task of efficiently handling geometric
reasoning. On this geometric interpretation level, tech-
niques have been investigated to structure the tasks of
detecting possible inference between geometric objects
(e.g., [14] and [19]) for efficient analysis.

Data models for cyberphysical infrastructure in con-
struction, plant automation and transport – domains
that we are aiming for in this paper – have been studied
in the past. Unlike in this paper, many of the existing
real-world applications are aligned towards a geometric
representation of componentes and are typically based
on so-called 2.5 dimensional GIS representations where
the 3rd dimension z = f(x, y) is represented as a func-
tion f of the 2 dimension x and y coordinates. This
[1] limits the geometric, topological and information
retrieval use of such models. True three dimensional
modeling is far from common practice [26]. Our ap-
proach is not limited to a particular geomteric repre-
sentation, coordinate or dimension system. Future ex-
tensions of interest include consideration of standards
such as the Web 3D Services and the Sensor Web En-
ablement Architecture of the Open Geospatial Con-
sortium 1, visualisation and decision support [28] and
efficient data structures for fast meta reasoning and
presenting subproblems of choice to specialist solvers
used in our examples.

We have been investigating mathematical models of
behavior in space in previous work [27], which also fea-
tures a survey on work related to these models. Speci-
fication and reasoning on existing software component
systems [6, 5] has also been examined by us. In this
work we aim towards a unified view of these aspects
and the introduction of a behavioral type style mech-
anism to annotate components which is a future goal
of this work. A software architectural model was pro-
posed in [25]. Symbolically reasoning about invariants
of asynchronous distributed systems, which is a part
of our verification methodology in this paper, has been
studied by us in [7].

3 Motivating Examples

We present two motivating examples to show the sce-
narios we are targeting and introduce some basic prin-
ciples. When formalising the behavior of system com-
ponents, different aspects like occupied space, physical
interactions, data communication, and internal states
can be distinguished. These aspects can change de-
pending on time and interaction with other compo-
nents. Properties of a particular aspect do not neces-
sarily have to depend on other aspects. For example,
spatial behavior may be independent of data commu-
nication aspects. To exemplify this, we present two

1http://www.opengeospatial.org

2



Improving Systems and Software Engineering Conference incorporating
SEPGSM Asia-Pacific Conference 2013

Melbourne, September, 2013

different models.

3.1 Concurrent Window Cleaning

Figure 1 shows a concurrent window cleaning system.
Platforms d1, d2 are attached to a mobile device on a
roof. They can be moved horizontally by moving the
mobile device on the roof and vertically through a rope.
Attached to each platform is a robot arm: t1 and t2.
It can have different positions relativ to its platform,
but only within a limited range. Furthermore, we can
have some kind of internal state for each platform.

The behavior of each robot is controlled by a pro-
gram. This program implies behavior which is po-
tentially non-deterministic and may depend on other
robots or external events. The behavior is character-
ized by spatial aspects, the movement of the robot,
communication aspects (e.g., interactions with other
robots or some external controlling device), and inter-
nal state changes.

We are interested in simulating possible window
cleaning scenarios. Robots have local states and when
they interact with another robot their actions may un-
dergo a synchronization. This synchronization does not
need to be global, i.e., in case of many robots clean-
ing a window, the synchronisation does not have to be
shared with all robots. For this reason, we only have
a partial order of time. Each element of this partial
order is called a timestamp.

One aspect that we are interested in, is whether a
certain system state implies a collision. In order to do
this, we could examine the position of each platform
and each robot arm. Based on this, we could calcu-
late the exact space boundaries that each device uses.
An alternative way is to use an abstraction and use
an overapproximation of the space used. More coarse
grained abstractions may only have to take the position
of the platforms into account.

3.2 Communicating Cars

Figure 2 shows two cars driving on a network of roads.
The road network is formalized as a graph. Cars have
a limited ability of locally communicating with each
other, iff they are within a certain distance of each
other. This distance is indicated by a circle around
the car in the figure. A car has a local state. This is
defined by the following ingredients:

• The road section it is currently driving on: the
edge of the corresponding graph.

d1

d2

t2

t1

Figure 1: Concurrent Window Cleaning

X

Fuel stations

c1

c2

Figure 2: Communicating cars

• The position on the road, e.g., indicating the
progress on the road section and the direction it
is facing.

• Aspects of the internal state that encapsulates the
parts of a state that are truly local to the car like
the amount of fuel left.

• Communication aspects of an internal state, e.g.,
states that are reached throughout an ongoing
communication effort with other cars according to
a protocol.

One can see, that spatial, truly internal and communi-
cation aspects are encoded in the states.

For calculating the distance between two cars travel-
ling on different roads, we need an interpretation. We
take the road edges and the position on the road into
account. The topological graph information needs to
be interpreted in a geometrical way. For example, we
can retrieve data from a geographic information system
to get the exact location on earth that allows us to com-

3



Improving Systems and Software Engineering Conference incorporating
SEPGSM Asia-Pacific Conference 2013

Melbourne, September, 2013

pute the distance between the two cars. Alternatively
a car may itself keep track of the actual coordinates
within its state. Furthermore, we need a shared times-
tamps between the two cars so that we have access to
their positions at the same time.

The local communication possibilities of the cars
may be used for various purposes. For example, a car
might inform the another car that a road has been
blocked (indicated by the X in the figure). The road
blockage may leave a fuel station inaccessible. The
other car may therefore alter a scheduled fuel stops
and use another fuel station.

4 Modeling Methodology

This section describes the key elements of modeling
systems and representing desired properties in our
framework. We propose the use of four different layers
for modeling systems and their behavior in terms of
space, internal behavior and communication.

1. A topological or geospatial coordinate system. In
our window cleaning example this is provided by
the window itself. In the communicating cars ex-
ample this is provided by the topological graph
representing the roads and its geographic / geo-
metric interpretation.

2. Static components and their interconnections. In
the sense of for example a street network, we can
have road blocks and road construction sites as
well as refuel stations. In the window cleaning ex-
ample, we can have single obstacles on the surface.

3. Mobile components. These comprise the cars and
robots from our examples moving within or across
their allocated segment without changes in the
static components structure.

4. Information flow. This can occur between mobile
and static components such as cars or robots or a
fuel station.

Systems can evolve and change their structure and be-
havior. A new road may be added or a new fuel station.
Cars can move and communicate with each others. The
layers are ordered with respect to the rate of expected
changes, with layer 1 seeing the least changes and level
4 most changes over time. Mobile components and
static components can be structured into subcompo-
nents.

4.1 Modeling of the Topological Layer

We propose to model the topological layer as a graph
(N,E) comprising a set of nodes N and edges E be-
tween these nodes. N and E can be infinite. A ge-
ometrical interpretation may be defined ontop of this
graph, e.g., by introducing a function measuring the
distance between two nodes: N ×N → R+.

In the case of the window cleaning example the graph
is made up from imaginary points distributed over
the window plane, e.g., realizing the intersections of a
raster. The edges are possible transition path between
them.

In case of the communicating cars, the topological
layer reflects the road structure. However, the graph
from the topological layer is much larger than the graph
imposed by the road structure, because different posi-
tions on roads will become independent nodes.

4.2 Modeling of Static Components

Static components are described by their position on
the topological layer. Multiple nodes in the topological
layer may be occupied. A static component can feature
an automaton (L, l0, C,E, T ) comprising a set of loca-
tions L, an initial location l0 ∈ L, a set of conditions C,
a set of events E and a set of transitions (l, c, e, l′) ∈ T
representing a transition between l, l′ ∈ L, guarded by
a condition c ∈ C and annotated with a set of events
e ⊆ E.

The automaton may be used to describe a communi-
cation protocol updates to the internal state or minor
changes in the occupation of space. Interactions are
realized using guards and events.

4.3 Modeling of Mobile Components

Like static components, mobile components can com-
prise an automaton (L, l0, C,E, T ). The automaton
may be realized to describe a communication protocol.
In addition to this C and E can comprise conditions
and events related to conditions in the topological layer
and movements inside this layer. Compared to static
components, mobile components will see much more
updates to their spatial behavior over time. In terms of
tool based verification and modeling it can be desirable
to treat them independent from static components.

4



Improving Systems and Software Engineering Conference incorporating
SEPGSM Asia-Pacific Conference 2013

Melbourne, September, 2013

4.4 Modeling of Information Flow

Information flow may be encapsulated in the guards
and events from the components. Conditions on the
information flow, like the fact that communication is
only possible within a certain range can be realized
using guards, too.

4.5 Modeling Properties

Properties have to be formally encoded so that ver-
ification tools can handle them. In addition to this,
our framework shall support the formulation of hu-
man readable properties at a higher specification level.
Here, we list three different levels of properties that
can be regarded.

• On the most basic level, we have Logical for-
mula. Formally, they can be written as LTL or
CTL formula, regular expressions or simply first
or higher order logic formula. These formula
are build from atomic expressions that represent
events encountered by components, conditions on
internal states, and positions taken by components
in space. In case of LTL, CTL and regular expres-
sions constraints on timestamp orders are encoded
in the operators of the logic. In contrast to this,
first or higher order logic formula can contain ex-
plicit information on timestamps which are atomic
expressions in this case, too. Atomic expressions
are connected using the logical operators of the
underlying logic to form larger expressions. For
reuse purposes, these can be tailored to one of the
specification layers or distinct entities within these
layers.

• On the next level, we are interested in properties
that can be formulated in a textual way, e.g., in a
requirements document like the detection of possi-
ble collisions between mobile objects and whether
mobile objects are close enough in order to interact
or communicate with each other. These properties
can be formalized using one or multiple formula
from the basic level.

• Eventually these properties can be combined to
ask questions like: can a task be safely executed
within a certain amount of time or is it advisable
to refuel before the next road intersection, because
a road may be blocked?

Translating high-level properties to low level formula
may be supported by domain-specific knowledge and
transformation templates gained from experience.

5 Checking Methodology

Checking properties of models is to be supported by
a tool based infrastructure in our framework. We de-
scribe the basic notions of invariants and verification
conditions and transformations on them that are cen-
tral to our checking methodology. We introduce the
tool based workflow and present examples.

5.1 Invariants

Invariants are abstractions of the behavior of compo-
nents or distinct aspects of a system. They capture an
overapproximation of a component’s behavior or a sys-
tem aspect with respect to spatial, communication and
internal behavior over time. Logically invariants are
represented as first or higher-order logic formula that
contain predicates representing atomic events, condi-
tions on space and communication and timestamps.

Since invariants provide an overapproximation of a
component they may serve as an basis for checking of
safety properties. Checking results achieved on the ba-
sis of our invariants can be carried back to the original
system if some preconditions are met (see e.g., [20]).
This means that we can check system properties on
the invariant level and be sure that the results hold for
the original system.

Handling invariants instead of complete specifica-
tions can be much easier, since details that are hard
to check or are even undecidable can be abstracted.

5.2 Verification Conditions

While invariants are logical formula that aim to capture
the semantics of a component or system aspect, veri-
fication conditions are logical formula that are aimed
as input for a distinct verification tool or algorithm.
They must obey to the distinct format of the tool, e.g.,
a SAT formula in case of a SAT solver 2.

5.3 Invariant and Verification Condition
Transformation

In our methodology, we need to transform invariants,
merge or split invariants and generate verification con-

2e.g., by using Sat4j: http://www.sat4j.org/

5



Improving Systems and Software Engineering Conference incorporating
SEPGSM Asia-Pacific Conference 2013

Melbourne, September, 2013

ditions from invariants. Invariants and verification con-
ditions are build from the elements of the underlying
logic or specification language and thus come with a
term structure. Transformations, which are defined in-
ductively on the term structure of invariants and verifi-
cation conditions are part of our methodology. Trans-
formations can be realized as functional programs or –
especially if additional features like higher-order unifi-
cation and the verification of the transformation itself
is an issue - in a higher-order theorem prover like Coq 3

or Isabelle/HOL [23].

5.4 The Workflow

Figure 3 shows the workflow for checking the properties
of models with respect to involved computation steps
and tools. Models and properties are given to our tool
chain for checking.

• In a first step, an algorithm is used to identify large
scale verification goals. For example static compo-
nents that are separated in space and do not inter-
act with each other may be checked independently.
The behavior of mobile components may also be
checked independently if they are only acting in a
local area in space or time. Properties may only
regard a local area and therefore only the behavior
of components that act within this local area has
to be taken into account. Best practices for this
approach can be scenario and domain specific. For
determining whether one component or a property
depends on another, techniques from model check-
ing like cone-of-influence reduction [12] can be ap-
plied. A result of this step is the identification of
a set of relevant components for the desired prop-
erties.

• In a next step, we compute the invariants for all
relevant components. One way to do this is to un-
fold all possible execution traces of an automaton,
include all relevant events and annotate them with
timestamps. These traces are than formalized as
invariants.

• We use these invariants to generate verification
conditions in a next step. Verification conditions
can be checked by separate highly specialised tools
like SMT solvers (e.g., Yices [13] or z3 [22]).

3http://coq.inria.fr/

Figure 4: Concurrent Window Cleaning Invariant Col-
lision

• The last step collects the results of the specialised
tools and presents an overall results. Optionally,
we refine invariants or verification conditions, if
the result does not satisfy our needs. Eventually
this may lead to an iterative process like a fix-
point computation or counterexample guided ab-
straction refinement [11] where invariants are the
predicates.

Computation of invariants can be done in parallel in
many cases. Verification conditions never depend on
each other, so they can be always checked in parallel.

5.5 Window Cleaning Example: Invariants

Here, we present steps necessary for checking the win-
dow cleaning example. Time in the the window clean-
ing example is synchronous.

Figure 4 shows a collision between boxes that repre-
sent invariants of the two window cleaning platforms.
The invariants themself are parameterized by time and
represent overapproximation of the platforms’ spatial
behaviors. Each box represents a distinct timestamp
(some intermediate timestamps are omitted in the fig-
ure). Our goal is to formalize the behavior of the plat-
forms, so that we can automatically detect the collision.

A textual representation for an example invariant for
the first window cleaning platform can be seen in Fig-
ure 5. An invariant for the second window platform is
shown in Figure 6. The general structure of invariants

6



Improving Systems and Software Engineering Conference incorporating
SEPGSM Asia-Pacific Conference 2013

Melbourne, September, 2013

preliminary analysis + workload distribution

models and property

abstraction/invariant generation

verification condition generation

verification tools, e.g, SMT solvers

...

sub-result evaluation

parallel execution

result

Figure 3: Tool workflow

7



Improving Systems and Software Engineering Conference incorporating
SEPGSM Asia-Pacific Conference 2013

Melbourne, September, 2013

Ic1(t) =
(t = 0)→ occupyXY space(87.0, 0.0, 97.0, 10.0)∧
(t = 1)→ occupyXY space(87.0, 1.1, 97.0, 11.1)∧
(t = 2)→ occupyXY space(87.0, 2.3, 97.0, 12.3)∧
(t = 3)→ occupyXY space(87.0, 3.8, 97.0, 13.8)∧
(t = 4)→ occupyXY space(87.0, 5.2, 97.0, 15.2)∧
(t = 5)→ occupyXY space(87.0, 6.0, 97.0, 16.0)∧
(t = 6)→ occupyXY space(87.0, 7.0, 97.0, 17.0)∧
(t = 7)→ occupyXY space(87.0, 8.7, 97.0, 18.7)∧
(t = 8)→ occupyXY space(87.0, 9.9, 97.0, 19.9)∧
(t = 9)→ occupyXY space(87.0, 10.9, 97.0, 20.9)∧
(t = 10)→ occupyXY space(90.0, 12.0, 100.0, 22.0)∧
(t = 11)→ occupyXY space(91.1, 12.0, 101.1, 22.0)∧
(t = 12)→ occupyXY space(92.0, 12.0, 102.0, 22.0)

Figure 5: Simplified example invariant (first platform)

Ic2(t) =
(t = 0)→ occupyXY space(100.0, 0.0, 110.0, 10.0)∧
(t = 1)→ occupyXY space(100.0, 1.2, 110.0, 11.2)∧
(t = 2)→ occupyXY space(100.0, 2.5, 110.0, 12.5)∧
(t = 3)→ occupyXY space(100.0, 3.8, 110.0, 13.8)∧
(t = 4)→ occupyXY space(100.0, 5.2, 110.0, 15.2)∧
(t = 5)→ occupyXY space(100.0, 6.3, 110.0, 16.3)∧
(t = 6)→ occupyXY space(100.0, 7.9, 110.0, 17.9)∧
(t = 7)→ occupyXY space(100.0, 9.1, 110.0, 19.2)∧
(t = 8)→ occupyXY space(100.0, 10.0, 110.0, 20.0)∧
(t = 9)→ occupyXY space(100.0, 11.2, 110.0, 21.2)∧
(t = 10)→ occupyXY space(100.0, 12.6, 110.0, 22.6)∧
(t = 11)→ occupyXY space(100, 13.9, 110, 23.9)∧
(t = 12)→ occupyXY space(100, 15, 110, 25)

Figure 6: Simplified example invariant (second plat-
form)

can be seen. On a top level, we make a case distinc-
tion on timestamps t. Here, we use integers to encode
timestamps and assume a total order. In general times-
tamps can be more complex, so that systems do not
need to be globally synchronized. Associated to each
timestamp is a predicate occupyXY space that repre-
sents an occupied box on a plane with an underlying
Cartesian coordinate system. It can be seen, that over
time, the first platform first moves down and than to
the right. The second invariant encapsulates the down-
ward movement of the second platform.

5.6 Window Cleaning Example: Verifica-
tion Conditions

Different solutions exists to generate verification con-
ditions from invariants with different optimization pos-
sibilities in terms of checking speed. Here, we list two:

1. A transformation takes a component invariant and
unfolds the occupyXY space predicates as shown
in Figure 7. Here, the predicate is broken down
into subpredicates which are connected by a con-
junction. Different possibilities for unfolding exist.
The subpredicates represent the occupation of a
single point on the coordinate system. If a single
point is occupied, the box shall be regarded as oc-
cupied. When reducing the box to subpredicates,
different occupied boxes with different coordinates
become comparable and overlapping is decidable.

After the unfolding, we only need to verify the
following formula:

∀ t ∈ {1, ..12} .
∃ occupyXY (x1, y1) ... occupyXY (x2, y2) .

p(Ic1)(t) ∧ p̄(Ic2)(t)

where p is the predicate unfolding transfor-
mation and p̄ is another unfolding transformation
for indicating that an area must not be occupied.
This formula can be easily split into verification
conditions that can be processed by a SAT solver.

2. A second way of comparing different invariants is
to take the invariants of two platforms at a time
and generate for each shared timestamp a geomet-
ric verification condition characterizing the over-
lapping of the two boxes with edge coordinates
(x1c , y1c), (x2c , y1c), (x1c , y2c), (x2c , y2c) for the a
component c, e.g.,

¬∃x, y.x1c1 ≤ x ≤ x2c1∧
x1c2 ≤ x ≤ x2c2∧
y1c2 ≤ y ≤ y2c2∧
y1c2 ≤ y ≤ y2c2

These verification conditions can be solved by
SMT solvers.

Common to both approaches is the fact that we need
to compare components pairwise for each each set of
shared timestamps. Additional optimization possibil-
ities comprise the elimination of possibilities for com-
ponents that do not interact with each other.

8



Improving Systems and Software Engineering Conference incorporating
SEPGSM Asia-Pacific Conference 2013

Melbourne, September, 2013

occupyXY space(x1, y1, x2, y2) =
occupyXY (x1, y1) ∧ occupyXY (x1 + 0.1, y1) ∧ ... ∧ occupyXY (x2, y1)∧
occupyXY (x1, y1 + 0.1) ∧ occupyXY (x1 + 0.1, y1 + 0.1) ∧ ... ∧ occupyXY (x2, y1 + 0.1)∧

...
occupyXY (x1, y2 − 0.1) ∧ occupyXY (x1 + 0.1, y2 − 0.1) ∧ ... ∧ occupyXY (x2, y2 − 0.1)∧
occupyXY (x1, y2) ∧ occupyXY (x1 + 0.1, y2) ∧ ... ∧ occupyXY (x2, y2)

Figure 7: Predicate unfolding (conjunction of points)

5.7 Invariants and Verification Conditions
in the Communicating Cars Example

Invariants in the communicating cars example are con-
structed in a similar fashion as in the window clean-
ing example. One invariant per car is constructed
that indicates possible positions of a car at a distinct
time. Note, that we can use disjunctions to encode
non-deterministic behavior. Verification conditions are
constructed with respect to the desired property. If
we want to investigate communication possibilities be-
tween two cars, we use a transformation that returns
true if a car is for a distinct timestamp in the range
of the other car. Computing approximations of the
distance can be done within standard SMT solvers or
using specialized algorithms.

6 Conclusion and Future Work

We have motivated a framework for specifying and
checking behavioral aspects in time, communication
and space of widely distributed systems. Adapting our
methodology to different application areas and inves-
tigating larger case studies remains subject to future
work. Eventually we plan to model and check large
systems comprising thousands of distributed compo-
nents using highly parallel hardware. Model storage
and checking of properties can eventually be offered as
cloud services.

References

[1] M. Apel. A 3D geological information system
framework. Geophysical Research Abstracts, vol.
7, European Geosciences Union, 2005.

[2] A. Basu, M. Bozga, J. Sifakis. Modeling Hetero-
geneous Real-time Components in BIP. Fourth
IEEE International Conference on Software Engi-
neering and Formal Methods, IEEE 2006.

[3] B. Bennett, A. G. Cohn, F. Wolter, M. Za-
kharyaschev. Multi-Dimensional Modal Logic as
a Framework for Spatio-Temporal Reasoning. Ap-
plied Intelligence, Volume 17, Issue 3, Kluwer Aca-
demic Publishers, November 2002.

[4] S. Bensalem, A. Griesmayer, A. Legay, T. H.
Nguyen, J. Sifakis, R. Yan. D-finder 2: towards ef-
ficient correctness of incremental design. In NASA
Formal Methods, LNCS, Springer, 2011.

[5] J. O. Blech. Towards a Framework for Behavioral
Specifications of OSGi Components. Formal Engi-
neering approaches to Software Components and
Architectures. Electronic Proceedings in Theoret-
ical Computer Science, 2013.

[6] J. O. Blech, Y. Falcone, H. Rueß, B. Schätz. Be-
havioral Specification based Runtime Monitors for
OSGi Services. Leveraging Applicationsof Formal
Methods, Verification and Validation (ISoLA),
vol. 7609 of LNCS, Springer, 2012.

[7] J. O. Blech and M. Périn. Generating Invariant-
based Certificates for Embedded Systems. ACM
Transactions on Embedded Computing Systems
(TECS), 2012.

[8] L. Caires and L. Cardelli.A Spatial Logic for Con-
currency (Part I). Information and Computation,
Vol 186/2 November 2003.

[9] L. Caires and L. Cardelli. A Spatial Logic for Con-
currency (Part II). Theoretical Computer Science,
322(3) pp. 517-565, September 2004.

[10] J. Canny. The complexity of robot motion plan-
ning. MIT Press, Cambridge, 1988.

[11] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith.
Counterexample-Guided Abstraction Refinement.
Computer Aided Verification, vol. 1855 of LNCS,
Springer, 2000.

9



Improving Systems and Software Engineering Conference incorporating
SEPGSM Asia-Pacific Conference 2013

Melbourne, September, 2013

[12] E. Clarke, O. Grumberg, D. A. Peled. Model
Checking. MIT Press, 1999.

[13] B. Dutertre, L. De Moura. The yices smt
solver. Tool paper at http://yices.csl.sri.com/tool-
paper.pdf, 2006.

[14] S. Gottschalk , M. C. Lin , D. Manocha , S.
Gottschalk , M. C. Lint , D. Manocha. OBB-Tree:
A hierarchical structure for rapid interference de-
tection. Proc. ACM SIGGRAPH, 171180, 1996.

[15] D. Hirschkoff, É. Lozes, D. Sangiorgi. Minimal-
ity Results for the Spatial Logics. Foundations of
Software Technology and Theoretical Computer
Science, vol 2914 of LNCS, Springer, 2003.

[16] P. Jimnez, F. Thomas, C. Torras. Collision De-
tection Algorithms for Motion Planning. Lectures
Notes in Control and Information Sciences 229,
Springer, 1998.

[17] S. Kambhampati and L.S. Davis. Multiresolution
path planning for mobile robots. Volume 2 , Issue:
3, Journal of Robotics and Automation, IEEE
1986.

[18] J-C. Latombe. Robot Motion Planning. Kluwer
Academic Publishers, 1991.

[19] M. C. Lin, D. Manocha. Fast interference detec-
tion between geometric models. The Visual Com-
puter, Volume 11, Issue 10, pp 542-561, Springer,
1995.

[20] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani
and S. Bensalem. Property preserving abstrac-
tions for the verification of concurrent systems.
Formal Methods in System Design, Volume 6 Is-
sue 1, Kluwer Academic Publishers, 1995.

[21] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T.
Dang, O. Maler. SpaceEx: Scalable Verification
of Hybrid Systems. Computer aided verification
(CAV’11), 2011.

[22] L. De Moura, N. Bjørner. Z3: An efficient SMT
solver. In Tools and Algorithms for the Con-
struction and Analysis of Systems (pp. 337-340).
Springer, 2008.

[23] T. Nipkow, L. C. Paulson, M. Wenzel. A Proof
Assistant for Higher-Order Logic. Volume 2283 of
LNCS, Springer, 2002.

[24] A. Platzer, J-D. Quesel. KeYmaera: A Hybrid
Theorem Prover for Hybrid Systems (System De-
scription). International Joint Conference on Au-
tomated Reasoning, volume 5195 of LNCS, pages
171-178. Springer, 2008.

[25] R. H. Reussner, I. H. Poernomo, H. W.
Schmidt. Reasoning about Software Architec-
tures with Contractually Specified Components.
Component-Based Software Quality, vol. 2693 of
LNCS, Springer, 2003.

[26] G. Smith and J. Friedman. A Technology Whose
Time Has Come. Earth Observation Magazine,
November 2004.

[27] A. Troynikov and H. Schmidt. Designing robust
fault tolerant systems with shape. Improving Sys-
tems and Software Engineering Conference incor-
perating SEPGSM Asia-Pacific Conference 2012,
Melbourne, August 2012.

[28] C. Weaver, D. Peuquet, A. M. MacEachren.
STNexus: An Integrated Database and Visual-
ization Environment for Space-Time Information
Exploitation. http://www.geovista.psu.edu/

publications/2005/Weaver_ARDA_05.pdf,
2005.

[29] S. Dal Zilio, D. Lugiez, C. Meyssonnier. A logic
you can count on. Symposium on Principles of pro-
gramming languages, ACM, 2004.

10


