
On Certifying Code Generation

Jan Olaf Blech

blech@informatik.uni-kl.de

Technical Report

No. 366/07

November 2007

Computer Science Department

University of Kaiserslautern

Abstract. Guaranteeing correctness of compilation is a major precon-
dition for correct software. Code generation can be one of the most error-
prone tasks in a compiler. One way to achieve trusted compilation is cer-
tifying compilation. A certifying compiler generates for each run a proof
that it has performed the compilation run correctly. The proof is checked
in a separate theorem prover. If the theorem prover is content with the
proof, one can be sure that the compiler produced correct code. This
paper presents a certifying code generation phase for a compiler trans-
lating an intermediate language into assembler code. The time spent for
checking the proofs is the bottleneck of certifying compilation. We ex-
hibit an improved framework for certifying compilation and considerable
advances to overcome this bottleneck. We compare our implementation
featuring the Coq theorem prover to an older implementation. Our cur-
rent implementation is feasible for medium to large sized programs.

1 Introduction

Today’s software systems are developed using high-level model or programming
languages, even in safety critical embedded systems. Since their runtime behavior
is controlled by the compiled code the need for trusted compilation is more
pressing than ever. Results achieved from static analyses and formal methods on
the source code level have often to be considered worthless if the formalization
chain from high-level formal methods to the machine-code level is not closed.

Two general approaches can be distinguished to bridge this gap. Thus estab-
lishing compilation correctness1. Certified compilers prove in a first step that the
algorithms of the compiler define a correct translation for all given well-formed
input programs (compiler algorithm correctness) and second that the algorithms
are correctly implemented on a given machine (compiler implementation correct-
ness). Certifying compilers (cp. Figure 1) provide a proof (called certificate) that
a target program is a correct translation of a source program whenever such a
translation is performed. It is important to notice that these proofs do not make
a statement about a compiler algorithm or its implementation, but only about
the relation of two programs. Compared to compiler certification, the technique

theorem prover

certificate

source code target codecompiler

Fig. 1. Certifying Compiler

of compilers certifying their results has three main advantages. First, the issue of
implementation correctness can be completely avoided. We do not have to trust
the implementation of the compiler algorithms on a hardware system or prove it
correct (cp. [4, 18, 6] on this problem). Second, similar to the proof carrying code
approach ([13, 12, 1]), the technique provides a clear interface between compiler
producer and user. In the certified compiler approach compiler users need access
to the compiler correctness proof to assure themselves of the correctness. Thus,
the compiler producer has to reveal the internal details of the compiler whereas
the translation certificates can be independent of compiler implementation de-
tails. Furthermore this abstraction from implementation details frees us from
reverifying the compiler once an aspect of implementation changes slightly. The
disadvantages of the certifying compiler approach is that users have to check the
certificates for each (critical) compilation. For larger programs this may be very

1 We follow the notions given by Xavier Leroy in [10].

time consuming. Both the certifying and certified compiler methodologies can
be applied independently to different phases of a compiler.

In this paper, we present a certifying compiler back-end translating an inter-
mediate language into MIPS [16] code. Our original certifying compiler frame-
work is described in [4, 6]. Based on this framework our certifying compiler back-
end comprises the following features

– Machine-checkability and independence of logic: All certificates generated are
machine-checkable using a theorem prover based on a formal general logic.
This logic is independent of languages and techniques used in the translation.
In this paper we use the Coq theorem prover [20] to specify our notion of
compilation correctness and as a checker for certificates.

– Semantics of involved languages and their correspondence: We require an
explicit formally specified semantics of intermediate language and MIPS code
and an explicit criterion stating correctness of compilation.

– Certifying compiler: We are using a technique where a special well separated
part of the compiler generates proof scripts as checkable certificates.

– User proved facts: The user of our compiler may provide facts he has proved
on source code level. For example the user may provide the information that
a variable used as an array index never exceeds the bounds of the array. This
enables us to abandon bound checks when accessing a memory location the
array is mapped to. This is an optional feature if the user does not want to
provide facts (maybe because he does not trust his source code analysis) he
does not have to.

This work ports and improves the certification framework introduced in [4] to
the Coq theorem prover. Compared to the old implementation we have encoun-
tered a great reduction in the speed for conducting the correctness proofs and are
now able to present a certifying compiler back-end that is able to handle realis-
tically sized programs. Furthermore we have extended the involved languages to
make them even more realistic and simplified the architecture of our certificate
generation resulting in a clear separation between actual code generation and
certificate generation.

Overview of the Paper

We discuss related work in Section 2. The intermediate language, the generated
MIPS machine code as well as the compilation process is described in Section 3.
Intermediate language and MIPS code are related with a notion of semantical
correspondence in Section 4. We describe the process of proving correctness of
a compiler run, its automation, and implementation using Coq in Section 5. In
Section 6 we evaluate our work and a conclusion is drawn in Section 7.

2 Related Work

Apart from our own work [4, 18, 6] on certifying compilers the following ap-
proaches are most relevant to this paper.

In the translation validation approach [17, 22, 23] the compiler is regarded as
a black box with atmost minor instrumentation. For each compiler run, source
and target program are passed to a separate checking unit comprising an analyzer
generating proofs. These proofs are checked with a proof checker. A translation
validation approach and implementation for the GNU C compiler is described
in [14]. Like in translation validation we regard correctness for each single com-
piler run. The analyzer generating the proofs corresponds to our certificate gen-
erator. In contrast to translation validation our approach is based on a general
higher-order proof assistant as proof checker and explicitly formalized seman-
tics. Furtheron we use more information to generate the proof scripts from the
compiler.

Credible compilation [19] is an approach for certifying compilers. Credi-
ble compilation largely uses instrumentation of the compiler to generate proof
scripts. Like translation validation and in contrast to our work credible compi-
lation is not based on a explicitly formalized semantics.

Proof carrying code [13] is a framework for guaranteeing that certain re-
quirements or properties of a compiled program are met, e.g. type safety or the
absence of stack overflows. While these are necessary conditions that have to be
fulfilled in a correctly compiled program we require in our work a comprehensive
notion of compilation correctness. In [11], Necula and Lee described a certify-
ing compiler for their approach guaranteeing that target programs are type and
memory safe. The clear separation between the compilation infrastructure and
the checkable ceritificate is realized in our approach as well.

A large body of research has been done on certified compilers. Here, we can
only give an overview of the different areas of work. In [10], the algorithms for a
sophisticated multi-phase compiler back-end are proved correct within the Coq
theorem prover. To achieve a trusted implementation of the algorithm, it is ex-
ported directly from the theorem prover to program code. A similar approach
based on Isabelle/HOL is presented in [8]. The verification of an optimization
algorithm is described in [2]; it uses an explicit simulation proof scheme for show-
ing semantical equivalence. In an important step in the direction of automating
the generation of correct program translation procedures is explained in [9].
A specification language is described for writing program transformations and
their soundness properties. The properties are verified by an automatic theorem
prover. Techniques and formalisms for compiler result checkers, decomposition
of compilers, notions of semantical equivalence of source and target program as
well as stack properties were developed in the Verifix project [7, 5, 21].

3 Intermediate Language and MIPS code

In this section we sketch syntax and semantics of our intermediate and MIPS
language. Both intermediate and MIPS semantics are defined in a small-step
operational way. Hence definitions of syntax are done using abstract datatypes.
States are encoded as tuples and transition rules as state transition functions.

3.1 The Intermediate Language

An excerpt of the definition of the intermediate language’s syntax is depicted
in Figure 2. The language comprises arithmetic expressions, (array-)variable as-
signments, (un)conditional branches, a print statement for output, and (poten-
tially recursive) procedure call and return statements. Procedures are lists of
statements. Programs consist of one or more procedures. Intermediate language
statements may comprise operands appearing on the left (loperand) or right side
of an assignment. Such operands comprise local (with respect to a procedure)
as well as global variables. Variables are identified with integers (Z). N denotes
natural numbers.

Inductive operand : Type :=
| CONST : Z − > operand | VAR : Z − > operand | LOCVAR : Z − > operand
| ARRAYC : (Z * Z) − > operand | ARRAYV : (Z * Z) − > operand.

Inductive loperand : Type :=
| LVAR : Z − > loperand | LLOCVAR : Z − > loperand
| LARRAYC : (Z * Z) − > loperand | LARRAYV : (Z * Z) − > loperand.

Inductive ilstatement : Type :=
| ILPLUS : (loperand * operand * operand) − > ilstatement
| ILBRANCH1 : (operand * N) − > ilstatement
| ILPRINT : operand − > ilstatement
| ILCALL2 : (loperand * N * operand * operand) − > ilstatement
| ILRET1 : operand − > ilstatement
...

Fig. 2. Intermediate Language Syntax (excerpt)

The Coq definition of a state in the intermediate language is show in Fig-
ure 3. It consists of five components: a flag of termination indicating whether the
current procedure has terminated, called another procedure or encountered an
error state. Furthermore the output occurred so far during the execution of the
program, a mapping from global variables (including arrays) to values, a stack
for local variables (including call arguments) and program counters as well as a
program counter indicating the next statement to be executed are encoded. The
semantics is defined via a state transition function ilnext taking one state and
an intermediate language procedure mapping them to the succeeding state.

3.2 The MIPS Language

Our formalized set of MIPS instructions comprises basic arithmetic operations,
shift operations, branch instructions. In addition instructions for basic output,

Record ilstate : Set := mkilstate
{termstate : N; output : list Z; varvals : (Z * Z) − > Z;
locvarsstack : list ((Z − > Z) * N); pc : N }.

Fig. 3. Intermediate Language State

procedure calls and return from a procedure are provided. It should be noted
that some formalized instructions such as instructions for procedure calls are
not genuine MIPS instructions. They consist of several real instructions but are
handled as one atomic instruction throughout this paper for simplicity reasons.
They encapsulate a predefined sequence of MIPS instructions doing work such as
storing call arguments in predefined spaces on the stack. As in the intermediate
language code for procedures is stored as lists of instructions. The definition of

Record ilstate : Set := mkilstate
{tltermstate : N; tloutput : list Z; regs : Z − > Z;
mem : Z − > Z; tlpc : N }.

Fig. 4. MIPS Code State Definition

a MIPS machine’s state is shown in Figure 4. As in the intermediate language it
consists of a flag indicating termination or other special occurrences and a list
of so far accumulated output. Instead of variable to value mappings it consists
of registers and memory to value mappings. A program counter is part of the
MIPS state, too.

The state transition function encapsulating the semantics is called tlnext. Our
semantics also needs a state transition function executing several instructions at
a time taking a state, a procedure definition, and the number of states to be
executed: tlnextn.

3.3 The Code Generation Algorithm

Our code generation phase comprises four steps. Apart from generating code
some analysis information for generating the correctness proofs are emitted. In
a first step memory locations are determined for local and global variables. Mem-
ory locations for local variables are assigned relatively to a special fixed register
serving as stack pointer. In the second step register allocation is performed.
Some values may be kept at some program points in registers. Nevertheless our
current implementation requires that there is still one memory location for each
variable. One result of these two steps is a mapping from intermediate language
variables to registers and memory addresses (variable mapping).

In the next step the intermediate language program is processed sequentially
and for each statement one or more MIPS instructions are generated. In our
current implementation this generation is done via standard compiler textbook
algorithms. Hence some simple optimizations are applied to each instruction
code sequence representing an intermediate language statement. Apart from the
generated code a byproduct of this phase is a relation of intermediate language
and MIPS code program points that correspond to each other: the program
counter relation.

In a last pass through the MIPS program jump targets are resolved with
the help of this program counter relation. Both the variable mapping and the
program counter relation serve as hints for our certificate generation. The whole
compiler is implemented using the ML programming language.

We have introduced an intermediate language and our formalization of the
MIPS processor instructions in this section as well as the principal code gen-
eration. Integers are formalized in Coq using a possibly non limited bit-wise
representation. This can be limited to 32 or 64 bits depending on the actual
MIPS processor the code is compiled for. For verification purposes integer arith-
metics is required to be the same in intermediate language and MIPS language
in our current implementation. Strings are not explicitly handled in our inter-
mediate language and MIPS code. It is however possible to encode strings as
integer arrays.

The involved intermediate language was chosen for its closeness to source
code resulting in sequential processing of statements and good readability (see
e.g. [3] for approaches to defining and reasoning about semantics of a more
sophisticated intermediate language). The MIPS processor was chosen because
of its simple architecture, wide area of usage, and the availability of a simulator.
Further language features such as intricate arithmetic operations can be added
easily into our compiler. However the focus of this paper is on demonstrating
the applicability of the certifying compiler approach particularly solving the time
problems arising with checking the certificates.

4 Correctness of Compilation: Semantic Correspondence

To verify that a transformation has been conducted correctly one needs to for-
malize a notion of correctness. The original and transformed program shall se-
mantical correspond to each other.

For our compiler we regard two programs as semantical corresponding if
they produce the same output traces. For the conduction of correctness proofs
however, it is much more useful to use a more restricted criterion that implies
the equality of observable traces.

In this work we break the task of verifying the compilation of a complete pro-
gram down to the verification of its procedures. Hence we regard the correctness
of independently compiled procedures. To guarantee semantical correspondence
of output traces we require the compiled procedures to generate the same output
traces. Furthermore the target code procedure may only write to the memory

heap (global variables in the intermediate language) or to its own stack frame
(local variables in the intermediate language). Parameters during procedure calls
have to be passed at distinct locations on the stack as are return values from
procedure calls. We require each procedure invoked within a procedure to be
correctly compiled according to these criteria. Global variables of different proce-
dures from the same program have to be mapped to the same memory locations.
The main procedure is treated like any other procedure in our methodology.
With these requirements on compilation of procedures we guarantee correctness
for the compilation of a complete program.

Formally we require both intermediate language and MIPS program to be in
a (weak) simulation:

– The initial states have to have corresponding values for variables and memory
locations.

– For two corresponding intermediate and MIPS states, if there is a next inter-
mediate operation, there has to be one or more MIPS instructions and the
execution of these operations has to denote the same output, and calculate
the same corresponding values i.e. the succeeding states are in the simulation
relation again. During the execution of such a step no violation of stack or
other properties may occur.

Lemma simulation:
user provided facts (optional) ->

statecomp s0 il s0 tl Vars MemMap PCRel ∧
forall s il s tl,

statecomp
s il s tl Vars MemMap PCRel
->

statecomp
(ilnext s il ilprog)
(tlnextn (steplength s tl PCRel) s tl tlprog)
Vars MemMap PCRel.

Fig. 5. Simulation Criterion

Figure 5 shows our simulation criterion comprising the requirements for cor-
rectness of procedure compilation formalized in Coq (slightly simplified). As
mentioned in the introduction when proving it correct optionally facts provided
by the user of the certifying compiler may be used. One can see the require-
ments on the initial states s0 il and s0 tl as formalized in the second line of the
Lemma as well as the simulation step quantifying over all possible state s il and

s tl in intermediate language and MIPS code. The statecomp predicate encap-
sulates the requirements on states as defined by the simulation relation. It is
parametrized with a set of variables (Vars) whose values shall correspond to the
values stored at certain memory (or register) locations on the MIPS machine,
the variable mapping encoded using a function MemMap (cp.3.3), and PCRel
the formalization of the program counter relation. Note that the correctness of
our certificate checks does not depend on these compiler provided information.
If wrong parameters are provided to statecomp the overall proof check will not
succeed since derivation of output equivalence will not be possible!
Discussion
The methodology presented in this paper allows for a verification that transforms
an intermediate language operation into one or more MIPS instructions. For our
code generation phase such a (1 : n) relation is sufficient and simplifies the prove
process. However in other compiler phases other criteria have to be used (cp. [6]).
In this paper we do not regard stack overflows, but simple assume that they do
not occur. It is possible to abandon this general assumption and provide facts
to the verification process proved on source code level. These might be stating
e.g. that only a certain stack depth occurs during the execution of a program.
This procurement is similar to dealing with array index bounds verification.

The question on when to regard programs as correctly transformed lacks a
simple answer (cp. Section 2) . Different notions may be adequate for different
purposes e.g. a failure of a target program due to resource limitations might be
an acceptable behaviour for some software aimed at running on a large range
of different computers. It is however unacceptable for most cases in embedded
systems. With (weak) simulation allowing us to encapsulate the requirements
of the simulation relation within a predicate like statecomp we believe that our
general approach is flexible enough to be adapted to all criteria commonly used
for correctness of compilation.

5 Proving Correctness of Compilation

In this section we describe our methodology to prove a compilation run correct.
We sketch a general correctness proof first. Secondly we emphasize on the certifi-
cates our compiler generates. Moreover we describe the pieces of software that
have to be written for certificate generation.

5.1 Proof Sketch

To prove a code generation run correct we have to show that each intermediate
language procedure and its compiled MIPS counterpart fulfill the simulation
criterion presented in Figure 5.

First we prove that the initial states of both programs are in the simulation
relation fulfill the statecomp predicate, respectively. For showing that for each
two states fulfilling the statecomp predicate the succeeding states are in the re-
lation again we make a case distinction on the intermediate languages program

counter. To fulfill statecomp it must point to some intermediate language state-
ment. Furthermore the MIPS program counter has to point to a corresponding
MIPS program point and the program counter relation has to indicate the exact
number of corresponding MIPS instructions. We make a case distinction on all
possible intermediate language statements. Hence we split intermediate language
and MIPS code into corresponding slices which have to semantical correspond
to each other. For each corresponding pair of slices we prove in Coq a separate
lemma that they compute equivalent values, store them at equivalent locations,
reach equivalent program points, call equivalent procedures with equivalent pa-
rameters, return equivalent values or produce equivalent outputs. Of course a
typical MIPS program may compute a lot of intermediate values that do not
appear in the intermediate language. We handle this by requiring only values of
variables appearing in the intermediate language procedure and the appropriate
memory locations to correspond to each other.

To prove such a single step correct we require a number of prerequisites.
Various properties concerning the mapping from variables to memory have to
be ensured in a first phase.

The step lemmata realizing the case distinction on the intermediate languages
program points are done in a second phase. Finally it is all put together in a
third phase proving the simulation criterion (cp. Figure 5).

This case distinction on program points of the given programs is the key to
proving the equivalence of intermediate language program and MIPS program.
It should be noted that proving such a step correct is not a direct execution of
certain instructions in certain states since the variables/registers/memory values
in such states are not fixed. It is the deduction of an abstract successor state
from another abstract state with the rules defining the semantics as introduced
in Section 3. Hence this procurement lifts the dynamic nature of trace based
semantics to a static view enhancing the possibility to reason about possibly
infinite state systems in a theorem prover.

5.2 Generating and Proving Certificates

Figure 6 shows our certifying code generation infrastructure. The actual code
generation takes an intermediate language procedure and produces MIPS code.
Furthermore as pointed out in Section 3.3 a set of variables used in the inter-
mediate language, a variable mapping mapping variables to memory locations
and a program counter relation is emitted. These are subsumed to info in the
Figure. It should be noted that when performing complicated optimizations in a
compiler phase it is very helpful to emit optimization relevant information such
as analysis results among the other info items. Coq representations of interme-
diate language and MIPS code are created for the compiled procedure. Based on
these information the certificate generator generates the proof scripts proving
the semantical correspondance between intermediate language and MIPS code.
Finally the theorem prover is invoked to process the proof scripts. Thus con-
ducting the correctness of compilation. Facts proved on source code level may

proof scripts

result

generation

info

scripts
proof

certificate

Code Generation

&

theorem prover

target codesource code

facts

user verified

Fig. 6. Overview of Our Certifying Code Generation

be used for this process. As with proof carrying code one might imagine sce-
narios in which it is advantageous to keep the proof script so that other people
using the program can be convinced that they have indeed a correctly compiled
procedure with respect to a piece of source code.

The certificate generator emits several proof scripts that depend on each
other. As described in Section 5.2 the processing of these scripts by the theorem
prover is structured in three phases as is their generation: mapping function
properties in a first phase. In a second phase lemmata proving the correctness of
symbolic execution steps. The third phase verifies our simulation criterion.

5.3 Proving the Mapping Function Properties

Crucial to our proofs is the fact that the variable mapping is injective: If we
change a variable and a corresponding memory cell no other variable’s memory
cell is effected. In the first phase this proof of injectivity is done in an inductive
way. This means: we prove that a mapping with one variable mapped to a mem-
ory or register location is injective. With adding additional variables we prove
that the mapping comprising the additional variable to new memory or register
location is still injective. To do this in a simple way we use a memory address
counter. All prior variable’s memory locations are below this counter. Hence,
if we assign a new memory location and it is equal or above this counter the
resulting mapping will be injective again. For local variables the proof is done
with locations relative to a stack pointer. This proof is combined with proving
additional characteristics of the variable mapping. For example it is vital for the
verification of operations involving dynamic array accesses that the following
holds:

the address of a[i] is the address of a[0] + 4 ∗ i (4 is the integer width)

Mapping function properties only have to be recomputed if the layout of the
variable mapping changes. Furthermore it is possible although not yet imple-
mented to partially reuse the proofs for old variable mappings when additional
variables are added and the mapping for the old variables does not change.

Lemma step14
forall varvals regs mem outp locvarstack,
... assumptions/facts ... − >
statecomp

(mkilstate 0 outp varvals locvarstack 14)
(mktlstate 0 outp regs mem 64)
Vars MemMap pcrel
− >

statecomp
(ilnext (mkilstate 0 outp varvals locvarstack 14) ilprog)
(tlnextn (mktlstate 0 outp regs mem 64) tlprog 3)
Vars MemMap pcrel.

Fig. 7. Lemma for one Symbolic Execution Step

The proof of injectivity is by far the most time consuming part of the proofs
conducted in the first phase. With an adequate encoding of the mapping function
other requirements are almost trivial to prove.

5.4 Proving Symbolic Execution Steps

The second phase realizes the case distinction on all possible intermediate lan-
guage statements. For each corresponding pairs of intermediate language state-
ment and MIPS instructions we generate and check a separate lemma that the
requirements of the statecomp (cp. Section 4) predicate are preserved during the
state transition. Before unfolding statecomp and checking that its requirements
are fulfilled we compute a symbolic representation of the states to be reached
via the current execution step. A single symbolic representation of these states
in Coq is crucial for easing the complexity of the proof scripts.

A typical lemma formalizing the correctness of one symbolic execution step is
shown in Figure 7 As described in Section 3 evalstatement and evalNinstructions
are state transition functions. It differs from the simulation criterion in the way
that program points and the number of steps to be execued in the MIPS code
are initialized with concrete values.

Figure 8 shows the corresponding code pieces that are proved to fulfill the
simulation requirements. A global variable [42] is increased by one. 268500992 is
the address it is mapped to. Checking the scripts generated in the second phase
can be carried out in parallel since no step lemma depends on another.

5.5 Proving the Simulation Criterion

In the third phase we prove that the simulation criterion from Figure 5 is ful-
filled. The correspondance of initial states can be done by simply unfolding the
statecomp predicate.

Intermediate Language Statement
ILPLUS (LVAR 42,VAR 42,CONST 1) [42]:=[42] + 1

MIPS Code
LOAD 8 268500992 register 8 := value at (268500992)
ADD 8 8 1 register 8 := register 8 + 1
STORE 8 268500992 addr at (268500992) := register 8

Fig. 8. Corresponding Code Pieces

The generated script for the simulation step makes a case distinction on all
possible program points of the intermediate language procedure. Each execution
step from such a program point is proved correct by applying the appropriate
lemma from the second phase.

We showed that the proof can be split up in three phases. While the first
phase proves a global property holding for the complete program the second
phase proves independent lemmata for each intermediate language statement.
The third phase finally proves our simulation criterion correct. Apart from that
we use lemmata proved independently of concrete programs to speed operations
up.

6 Evaluation of our Work

In this section we evaluate our certifying code generation phase. We focus on
the generated proofs and especially the time it takes to check the proofs. In a
previous work [4] it turned out that this is by far the bottleneck of our certifying
compilers.

The table shows the time2 it takes to prove the code generation of different
programs correct. It shows the number of variables occuring in the program
(counting array elements as single variables). The length of the original
intermediate program (IL length) as well as the length of the generated MIPS
code (TL length). In the last three columns the time it takes to check the proofs
for the three different phases is shown.

2 Experiments conducted on Intel Core 2 Duo machine with 2.16 GHz using one core
and Coq Version 8.1.

program no. variables IL length TL length phase1 phase2 phase3

sort1 1008 16 67 3m 17s 5s 2s
sort1a 2008 16 67 10m 28s 5s 2s
sort1b 3008 16 67 21m 29s 5s 2s
sort1b 4008 16 67 36m 15s 5s 2s
sort1c 5008 16 67 54m 50s 5s 2s
arith1 16 177 705 2s 38s 29s
arith2 18 353 1409 2s 1m 53s 1m 51s
arrays1 2030 520 2059 10m 34s 4m 25s 4m 21s
arrays2 2030 1030 4107 10m 34s 14m 47s 9m 32s

The sort procedures sort arrays from 1000 (sort1) up to 5000 (sort1c) elements.
The arith procedures mostly contain arithmetic operations while the arrays pro-
cedures perform operations on differently sized arrays. With procedures reaching
several hundred lines of code the time it takes to check the proofs is increasing
faster than linear. This is due to the larger data structures which have to be
handled during the proof process. Accesses to these structures grow linear with
code size however since the structures themself are growing linear we end up
with a time that is growing quadratic. A similar argument holds for the variable
mapping in the first phase. Compared to the Isabelle/HOL [15] (2005) imple-
mentation of [4] we are able to handle much larger programs. Verification times
from several hours up to several days where typical for programs between 100
and 200 lines of code and up to 200 variables. We also proclaimed quadratic
time behaviour in phase2 since each proof for a single step lemma would grow
linear with the size of the program due to the look up of statements, instructions,
variable, memory and program counter correspondences from list like data struc-
tures. These look up operations where carried out in the Isabelle/HOL theorem
prover mostly by unfolding the definition of a look up function and matching
axioms describing the semantics of such a function against the definition and
the data structure containing the data to be looked up. In Coq we are able to
execute look up function definitions directly in the Coq environment. Hence the
look up operations which where the bottleneck in our Isabelle implementation
are not critical in our Coq implementation any more. Furthermore the trusted
computing base is not enlarged.

Compared to the time it takes to check the proofs the time the proof generator
takes to generate them and the compiler takes to generate the code is negligible.
The proof generator size is with a few hundred lines of ML code comparable to
its Isabelle/HOL counterpart in [4].

Our implementation and its performance evaluation demonstrates that cer-
tifying code generations is practicable for realistic compiler back-ends. As men-
tioned in Section 5.2 the time to conduct phase1 can be significantly reduced by
preproving common memory layouts. Time reduction is even easier to achieve for
phase2 since each lemma can be conducted in parallel. We believe that phase3
could highly benefit from the use of proof terms that may enable us to abandon
a large number of unifications done in this phase. This solution however might
require a larger certificate generator. With these improvements it should be pos-

sible to conduct proofs even for procedures with significantly more than 10000
lines of code or variables in acceptable time.

7 Conclusion and Future Work

In this paper we have presented a methodology as well as an implementation
of a certifying code generation phase. We did extend the code generation phase
by a certificate generator producing Coq correctness proofs (certificates) for
each compiler run. These are proved correct in the Coq system giving us the
guarantee that the compiler has worked correctly. Our correctness criterion is
independently of concrete transformations formalized in a higher order logic. In
previous work we have shown that checking the certificates is the bottleneck in
the certifying compiler approach. We did a great effort on reducing the speed
for certificate checking by switching to the Coq theorem prover. It allows us to
conduct time critical operations in a native way without enlarging the trusted
computing base. Furthermore we have extended the involved languages and were
able to further simplify our certification architecture. In our current implemen-
tation only minimal instrumentation of the compiler is required for our code
generation phase. Therewith we have demonstrated the feasibility of the certi-
fying compilation approach for the code generation phase of compilers.

A goal for the near future is to investigate in how far Coqs ability to
generate and handle proof terms can make the proofs even more fast. Further
goals comprise language extensions such as pointers and improvement of the
other compiler phases.

Acknowledgement
The author would like to thank Arnd Poetzsch-Heffter for many valuable
suggestions and comments on this paper.

References

1. A. W. Appel. Foundational proof-carrying code. In LICS, 2001.
2. J. O. Blech, L. Gesellensetter, and S. Glesner. Formal verification of dead code

elimination in Isabelle/HOL. In Software Engineering and Formal Methods, pages
200–209. IEEE, IEEE Computer Society Press, September 2005.

3. J. O. Blech, S. Glesner, J. Leitner, and S. Mülling. A comparison between two
formal correctness proofs in Isabelle/HOL. In Proc. COCV Workshop , ETAPS
2005, ENTCS, April 2005.

4. J. O. Blech and A. Poetzsch-Heffter. A Certifying Code Generation Phase. In
Proc. COCV Workshop, ETAPS 2007, ENTCS, March 2007.

5. B. Buth, K.-H. Buth, M. Fränzle, B. von Karger, Y. Lakhnech, H. Langmaack,
and M. Müller-Olm. Provably correct compiler development and implementation.
In Proc. CC ’92, volume 641 of LNCS, Springer-Verlag, 1992.

6. M. J. Gawkowski, J. O. Blech, and A. Poetzsch-Heffter. Certifying Compilers based
on Formal Translation Contracts. Technical Report 355-06, Technische Universität
Kaiserslautern, November 2006.

7. G. Goos and W. Zimmermann. Verification of compilers. In Bernhard Steffen and
Ernst Rüdiger Olderog, editors, Correct System Design, volume 1710 of LNCS,
Springer-Verlag, November 1999.

8. G. Klein and T. Nipkow. A machine-checked model for a Java-like language,
virtual machine and compiler. ACM Transactions on Programming Languages and
Systems, 28(4):619–695, 2006.

9. S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated soundness proofs
for dataflow analyses and transformations via local rules. In proc. POPL’05, pages
364–377, ACM Press, 2005.

10. X. Leroy. Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In proc. POPL’06, pages 42–54, ACM Press, 2006.

11. G. C. Necula and P. Lee. The design and implementation of a certifying compiler.
In proc. PLDI’98, pages 333–344, ACM Press, 1998.

12. G. C. Necula. Proof-carrying code. In proc. POPL’97, ACM Press, January 1997.
13. G. C. Necula. Compiling with Proofs. PhD thesis, 1998.
14. G. C. Necula. Translation validation for an optimizing compiler. In proc. PLDI’00,

pages 83–95, ACM Press, 2000.
15. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS, Springer-Verlag, 2002.
16. D. A. Patterson and J. L. Hennessy. Computer organization and design (2nd ed.):

the hardware/software interface. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1998.

17. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In proc. TACAS,
volume 1284 of LNCS, 151+, Springer-Verlag, 1998.

18. A. Poetzsch-Heffter and M. J. Gawkowski. Towards proof generating compilers.
Electronic Notes in Theoretical Computer Science, 132(1):37–51, 2005.

19. M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings of
the FLoC Workshop on Run-Time Result Verification, Trento, Italy, July 1999.

20. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.1 http://coq.inria.fr.

21. W. Zimmermann. On the Correctness of Transformations in Compiler Back-Ends.
volume 4313 of LNCS, Springer-Verlag, 2006.

22. L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A translation validator for
optimizing compilers. In proc. COCV Workshop, ETAPS 2002, ENTCS, April
2002.

23. L. Zuck, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and Y. Hu. Translation
and Run-Time Validation of Loop Transformations. Formal Methods in System
Design, 27(3):335–360, Springer-Verlag, 2005.

