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Abstract:
We introduce a framework for visualization of data originating from industrial automation devices.
Our framework uses cloud-based services to collect data from industrial automation controllers.
Clients can subscribe to the data sources and visualize them in accordance with customer needs.
Data from industrial automation facilities is associated with formal semantic models, such as a
mathematical representation of the material flow in a production plant. The formal models are used
to represent interdependencies between entities, their functionality and other descriptive elements.
Ultimately this is used in the visualization and for reasoning about systems. In addition to the
software framework we describe work on our demonstrator: an example factory with Raspberry
Pi-based controllers that are interconnected via standard ethernet technology.

1 Introduction

Connecting controllers in factories to inter-
net services comes with a variety of benefits with
respect to operation and maintenance. Recent
trends are frequently summarized under the term
Industry 4.0 [Kagermann et al., 2013]. Automa-
tion controllers communicating with centralized
cloud-based services can not only be used for
classical supervisory control and data acquisition
(SCADA) tasks, but can also be used for services
that are orthogonal to SCADA functionality.
Such tasks can comprise additional data analytics
and visualization functionality (see, e.g., ABB’s
service port framework1) as well as remote health
monitoring (see, e.g., [Wenger et al., 2016]). In
our work, we are particularly interested in remote
monitoring, operation and maintenance of pro-
duction plants. For example supporting mining
site operations, e.g., in the Australian outback is
a target area.

In this paper, we introduce a cloud-based
framework to gather data from controllers
and visualize the data using a web-based

1http://new.abb.com/process-automation/
process-automation-service/
advanced-services/serviceport

frontend. While a variety of products al-
ready exist for visualizing industrial facil-
ities such as Dassault Systèmes’ Delmia
and Enovia[Dassault Systemes Delmia, 2013,
Dassault Systemes Enovia, 2013], we focus on
the cloud-based architecture and on a more
abstract data visualization view. Visualization
is based on formal models. In particular, we
are interested in models that express spatio-
temporal relationships between entities. A
variety of formalisms for spatio-temporal models
have been developed. More process algebra-
like approaches [Caires and Cardelli, 2003,
Caires and Cardelli, 2004] can have benefits
when investigating concurrency. On the model-
ing side, our approach is similar to the qualitative
predicates of the Region Connection Calculus
(RCC) [Bennett et al.,2002] that can express
inclusion, neighborhood and similar spatial
properties. Furthermore, the cardinal direction
calculus [Skiadopoulos and Koubarakis, 2005],
the rectangle algebra [Balbiani et al., 1999], and
the cross calculus [Van de Weghe et al., 2005]
use comparable means of abstracting from
concrete geometric objects in models. On the
other hand, semantic descriptions of services
in the industrial automation area have been



discussed (see, e.g., [Loskyll et al. 2011]) as
well as ontologies for factory automation (e.g.
[Lin and Harding, 2007]).

The main contributions of this paper are the
use of semantic data models for industrial au-
tomation in combination with our cloud-based
visualization platform. Furthermore, a demon-
strator combining these technologies is presented.
The demonstrator can be used to analyze produc-
tion plant operations remotely.

Our data modeling language is introduced in
Section 2. The cloud-based data visualization
platform is presented in Section 3, while the
demonstrator is presented in Section 4. A conclu-
sion and future work are presented in Section 5.

2 BeSpaceD Data-models

In our work, semantic models as well as
data in production plants is formalized using the
BeSpaceD framework [Blech and Schmidt, 2014].
We briefly introduce the language then describe
the data structures used in the models.

2.1 BeSpaceD

BeSpaceD is a framework for spatio-temporal
modeling and reasoning. It comprises:

• A language for modeling spatio-temporal sys-
tems and representing data. The language
serves as a domain specific language (DSL)
and is realized using abstract datatype con-
structors provided by the Scala programming
language. The language comprises logical op-
erators such as conjunctions, disjunctions and
implications as well as operators for time and
space as basic entities.

• A library-like collection of operations to rea-
son about the BeSpaceD models as well as im-
port and export functionality. Typical opera-
tions comprise abstractions and property de-
tection (such as collisions in time and space).

In the past, BeSpaceD was successfully ap-
plied to domains such as train systems
[Hordvik et al., 2016], industrial automation
[Blech et al., 2015] and smart energy systems
[Blech et al., 2016].

2.2 Graphs representing Industrial
Plants

Most of our models for production plants are rep-
resented as graphs (L,E) comprising a set of loca-
tions L and edges E. Typically L can refer to ma-
chines, sensors and actuators in a plant while the
elements of E represent interdependencies such
as connections, material flow, distances, commu-
nication channels. Both edges and locations can
be annotated. To give a look and feel, we have
realized the following constructors for graphs in
BeSpaceD/Scala:

class BeGraphAnnotated[+N, +A]
(terms: List[EdgeAnnotated[N, A]])
extends BIGAND[EdgeAnnotated[N, A]](terms)

class EdgeAnnotated[+N, +A]
(val source : N, val target : N,

val annotation: Option[A])
extends ATOM

For example, we have modeled different as-
pects of our factory demonstrator. In the eval-
uation of our framework, we are particularly in-
terested in the material flow topology. This rep-
resents the expected flow – between sensors and
actuators – of material through the factory. We
created a specialized subclass of our graph. The
following provides a small excerpt of our graph-
based formal model. The listing below shows the
definition of an edge in a graph and its use in
a very small graph definition comprising a set of
two edges. The topology does not need to be
static, it can change over time. To represent this,
we can annotate the graphs with time constraints.

def edge(s: FestoSensor, t: FestoSensor) =
EdgeAnnotated(s, t, Some(ProcessSequence))

BeGraphAnnotated[FestoSensor,
TemporalFestoConnection] (

edge(CapDispenser.StackEjectorRetracted,
CapDispenser.StackEjectorExtended) ^

edge(CapDispenser.StackEjectorExtended,
CapDispenser.StackEmpty)

)

The nodes (e.g. StackEjectorRetracted) are
objects that uniquely identify a sensor in the
demonstrator.

2.3 Sensor Data

In addition to the static nature of the plant mod-
els, we use BeSpaceD to treat live sensor data.
Sensor data comprises a sensor identifier that
should have a corresponding node in the plant



model. Furthermore, it is associated with a time-
stamp and the actual sensor value. For exam-
ple, we use the following construct is used to
specify that the sensor StackEjectorRetracted
has the value Obstructed(High) at a timepoint
1479976418134

INSTATE(StackEjectorRetracted, 1479976418134,
Obstructed(High))

The long integers for the time point are record-
ing milliseconds since Epoch (12:00am, Jan 1st,
1970).

Sensor data can be sent using the JSON for-
mat. The example above is encoded as follows:

{"type": "IMPLIES",
"premise":{"type": "BIGAND", "terms": [
{"type": "Component",
"id": "Stack Ejector Retracted"},

{"type": "TimePoint",
"timepoint": 1479976418134}

]},
"conclusion": {"type": "Obstructed",

"signal": High}
}

3 Cloud-based Reporting and
Data Visualization

This section describes the software platform
for the visualization of plant data and data-
models formalized using the BeSpaceD frame-
work.

3.1 eStoRED

eStoRED is an open source data visualization
platform for industrial decision support and risk
assessment. Its architecture is shown in Figure 1.
It enables the joint-visualization of data from var-
ious data sources or workflows. The visualization
is realized using a centralized platform, to make
sense of the various pieces of data as a whole,
and to provide a way of collaboratively telling a
meaningful story about the data. The eStoRED
reporting tool offers a way to connect to data
sources, retrieve data and visualize it along with
the possibility to attach metadata. Possible data
sources comprise streamed data (such as sensor
data delivered over a network connection), web-
services, relational databases and file systems. In
eStoRED, users can add their own analysis and
risk definition assessment, thereby enriching and
adding value to the data displayed. This allows
building data-backed comprehensive reports. The

eStoRED system can handle static data extracted
from files or databases as well as live data – such
as data coming from sensors – given that there
exist a connector to the data source.

3.2 Architecture

In eStoRED, the main entities created by users
are called Stories. Stories contain different Ele-
ments: Data Elements are the connected elements
visualizing data, Input Elements are the analysis
parts written by the users. At its core, the eS-
toRED platform is composed of a web application
backed by a relational database, a message broker
and a repository of snippets of code for visualiz-
ing data, called Vislets. We describe eStoRED’s
components and how they interact together:

• On one end, the data sources are the pro-
cesses, applications and systems that produce
the data. They publish data into messages
handled by a publish / subscribe system that
orchestrates and distributes messages to the
processes that have subscribed. The third-
party system chosen for this role is Rab-
bitMQ2, an open-source, secure, robust and
scalable system for software messaging, using
the AMQP protocol3.

• The Java web application is using the Spring
MVC framework, Hibernate ORM to map its
data model to a MySQL database storing the
internal eStoRED data (Stories, Data Ele-
ments, Input Elements, etc.). When working
on a Story, a user can create Data Elements
and define one or more Subscriptions for each
of them.

• A Subscription is composed of a subscription
expression, the expected format of the data
to be received and the snippet of code, called
Vislet that will handle and visualize the data
once it is received. eStoRED is connected via
a REST API to a curated repository of Vislets
and can filter them according to some meta-
data attached to each Vislet. The eStoRED
graphical user interface automatically filters
the Vislets to only show those that can han-
dle the expected data format.

• The topic subscription mechanism of Rab-
bitMQ is used for subscribing. The mech-
anism uses routing keys to match publishers
and subscribers. The subscription expression
defined in eStoRED is used as the RabbitMQ

2https://www.rabbitmq.com
3https://www.amqp.org/
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routing key, a sequence of characters up to 255
bytes, defining dot-separated words and allow-
ing the wildcards characters * (star) substitut-
ing for exactly one word and # (hash) substi-
tuting for zero or more words. This enables a
powerful and flexible mechanism to easily cre-
ate subscription expressions spanning a wide
range of data sources. For example: aus-
tralia.2016.rainfall, australia.2016.*, #.rain-
fall are valid routing keys.

Data sources can also use this mechanism to
subscribe to each other via the messaging sys-
tem, and this way create data workflows. This is
illustrated at the bottom of Figure 1 where Data
Source #3 is subscribed to Data Source #2, and
Data Source #4 is subscribed to Data Source #3.

Once Data Elements have been defined, when-
ever a Story is loaded, the following steps happen,
as shown in Figure 1 : 1. eStoRED retrieves the
Story and the Data Elements it contains. 2. It
connects to the Vislet repository and retrieves the
Vislets defined in the Subscriptions of each Data
Element. 3. The web application then generates
a web page where the Vislets are included. 4. On
the web page, a JavaScript client for RabbitMQ
is executed directly into the client’s web browser
to subscribe to the expression. 5. When a Data
source publishes a message, if a Data Element is
subscribed to it, the message broker passes it on,
and the Vislet code is called to interpret the data
contained in the message, and act on it by dis-
playing it or performing specific computation on
it.

4 Demonstrator and Evaluation

We have created a factory demonstrator and
connected it to our framework. Figure 2 shows an
overview of our food-processing factory demon-
strator. The conveyor belt circle for pallets in
the middle part and the bottling machinery in
the lower left of the picture are visible. One of
our Raspberry Pi-based controllers is shown in
Figure 3. It features a Raspberry Pi including
network connectivity as well as IO-boards to com-
municate with the sensor and actuator world.

The Figure 4 shows how the eStoRED archi-
tecture is used in the context of visualizing that
demonstrator. The topology of the food process-
ing plant demonstrator is formalized in BeSpaceD
as part of the configuration of the program mon-
itoring the plant. It is converted into the JSON
format and sent to the message broker at initial-

ization. Whenever the sensors’ statuses change
over time, the sensors send signals to their respec-
tive Raspberry Pi-based controller. A program to
monitor this is deployed on the Raspberry Pi. Af-
ter converting these into the BeSpaceD language,
the corresponding events are sent to the message
broker via a simple AMQP client.

At the other end, a Data Element is created
in the eStoRED platform, with two Subscrip-
tions: one for the topology, and one for the sensor
events. The specific visualizers are retrieved and
loaded into the web browser. Being in the same
data element, both visualizers are acting on the
same graph visualization. The topology visual-
izer draws the nodes and edges of the graph rep-
resenting the process, and the sensors visualizer
re-draws the status of the sensors by colouring
the nodes whenever they get updated.

Figure 5 shows an eStoRED Data Element
which has received both topology data and sen-
sor data. A timeline control can be observed at
the top of the Data Element, which is updated
when receiving new sensor data. Since each sen-
sor signal encompasses the exact time when it
happened, the visualizer enables scrolling through
signals received in the past, using this timeline
control. At the bottom of the Data Element are
displayed metadata that can optionally be added
to AMQP messages as key-value pairs. Here it
only shows metadata as an example, but this
could be important data such as the factory loca-
tion or staff responsible for it. To provide a look
and feel, Figure 6 shows a larger graph visualized
using eStoRED.

An excerpt of the semantic model represented
as a topology in the JSON format is shown below:

{"type":"BIGAND","terms":[ {
"type" : "EdgeAnnotated",
"source" : {"type":"Component",
"id":"Stack Ejector Retracted"},
"target" : {"type":"Component",
"id":"Stack Ejector Extended"},
"annotation" : "ProcessSequence"
} , {

"type" : "EdgeAnnotated",
"source" : {"type":"Component",
"id":"Stack Ejector Extended"},
"target" : {"type":"Component",
"id":"Stack Empty"},
"annotation" : "ProcessSequence"
} , ...

Two edges representing material flow are
shown with their annotations. Another graphical
depiction of a factory element is shown in Fig-
ure 7. Only a limited number of edges are shown



Figure 2: Food processing plant demonstrator

Figure 3: Raspberry Pi-based controller
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Figure 6: Larger graph visualized with eStoRED

for readability proposes The dashed lines repre-
sent parts of the factory and these correspond to
their relative spatial position and size. Squares
represent actuators and circles represent sensors.

Some meta data is shown that is used for
configuration, debugging and automatic decision
support. Of note is the General Purpose Input
Output (GPIO) Pin number of the Raspberry Pi-
based PLC that is mapped to the actuator that
controls and actuator: it extends a stack ejec-
tor. The signal mapping defines the binary volt-
age level (e.g. zero or 24 volts) that the actu-
ators or sensors accept or emit. This relates to
sensor states in our model (e.g. [de]activate ac-
tuator; [un]obstructed light sensor). Spatial mea-
surements for a tube that holds bottling caps are
shown to illustrate the annotation of geometric
information. The symbols are reference points
and intermediate values used to formulate abso-
lute measurements.

There are three different qualitative topologi-
cal aspects that can be distinguished in our fac-
tory model. One edge from each aspect is added
to the diagram to illustrate them.

• Material Flow Topology (green)

In the example, this edge is asserting that the
stack empty sensor becomes obstructed ex-
actly one second before the stack ejector ex-
tended sensor becomes unobstructed. In other
words, it takes one second to eject the last cap
from the stack.

• Interdependency aspects (blue)

This edge is asserting that the stack ejec-

tor extended sensor becomes unobstructed be-
tween 200 to 300 milliseconds after the stack
ejector extend actuator is inactivated (pas-
sive). In other words, it takes 200–300 ms for
the light sensor to indicate retraction after the
actuator starts retracting the stack ejector.

• Safety aspects (red)

This edge is asserting a constraint that we
want the loader to move to the pick-up po-
sition from half a second before to one and a
half seconds after the stack ejector starts ex-
tending in order to avoid a collision.

5 Conclusion

This paper described our cloud-based data col-
lection and visualization framework for industrial
automation. We presented the incorporation of
spatio-temporal models into the framework and
discussed some detailed examples. In addition,
we introduced a demonstrator and a visualization
application. The cloud-based software framework
and the example factory are integrated and serve
as a demonstrator platform for our lab. The pre-
sented work facilitates monitoring, operation and
maintenance of production plants. In particular
remote plants such as mining sites in the Aus-
tralian outback are a targeted application area.
Future work will connect additional services to
the AMQP server in order to establish a common
interchange platform for factory data.
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