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September 26, 2008

Abstract

Verification and validation techniques have become popular in software and hardware develop-
ment. They increase the confidence and potentially provide rich feedback on errors. However,
with increasing complexity verification and validation techniques are more likely to contain
errors themselves. In this paper we address the problem of guaranteeing the correctness of
validation work with respect to a formal notion of correctness: We certify the absence of dead-
locks in systems. Our certification is based upon an existing tool checking deadlock-freedom
of BIP (behavior, interaction, priority) [BBS06] models: D-Finder [BBNS08]. BIP is a lan-
guage for modelling real-time systems. Certificates are generated each time a BIP model is
successfully checked for deadlock absence. They contain a proof script – an algorithm – that
describes how to ensure oneself that a BIP model is indeed deadlock-free. Furthermore, they
comprise system invariants of the checked BIP models implying deadlock-freedom that are
used by the proof script. With the help of such a certificate third party users can ensure them-
selves of deadlock-freedom of their BIP models without having to trust or even take a look at
the deadlock checking tool. In particular our certification methodology comprises the formal-
ization of the notion of deadlock-freedom in the higher-order theorem prover Coq. The use of
a higher-order theorem prover allows us to formalize this notion in a human readable way. The
formalization of the BIP semantics, models, and their invariants in Coq, and an algorithm that
checks whether the notion of deadlock-freedom indeed holds for a given BIP model are part
of the methodology, too. The algorithm is instantiated to form more concrete proof scripts that
are distributed as parts of our certificates. Apart from presenting the methodology we discuss
first experimental results.
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1 Introduction

Tools to ensure properties of system models and programs have become popular in many application ar-
eas. One major goal is to guarantee safety and security properties of the considered system models and
programs. However, as these tools become more and more complex it is not always easy to see if they are
themselves working correctly. An incorrect tool might state a wrong property about a system or a program.
The approach presented in this paper is aimed at guaranteeing that distinct results of such tools are indeed
correct. In our case we are looking at the tool D-Finder [BBNS08] that decides deadlock-freedom of BIP
models [BBS06]. BIP is a language designed for building real-time systems consisting of heterogeneous
components. Deadlock-freedom is especially crucial for systems with complex component interaction.

We use a certifying approach. This means that we generate for each successful run of the D-Finder tool
a certificate comprising invariants of the BIP model checked to be deadlock-free and a proof script. Thus,
each usage of the D-Finder tool for a particular system is verified after it has been performed. Using this
certificate, the BIP models, an easily human understandable formalization of deadlock-freedom, and the
Coq theorem prover serving as certificate checker, developers and third party users can ensure themselves of
the deadlock-freedom without having to trust or even know D-Finder or its algorithms and implementation.

The automatic certificate checking is implemented using the higher-order theorem prover Coq [The07].
Coq features the ability to formalize semantics of BIP models and the notion of deadlock-freedom in a
human readable way. Furthermore, Coq allows us to encode the certificate checking algorithm.

Using this methodology the only parts that have to be trusted to guarantee deadlock-freedom of a
BIP model are Coq, our notion of correctness and semantics definition, and the underlying hardware and
operating system.

Using certifying techniques has – among others – the following advantages over non certifying verifica-
tion techniques (see e.g. [Ble08] for a more comprehensive compilation of advantages and disadvantages):

• Easiness, we do not need to verify the algorithm and implementation of the D-Finder tool, but only
distinct runs.

• Robustness, if the implementation of D-Finder changes slightly there is often no need to adapt cer-
tificate generation.

• Furthermore, there is no need to give access to the tool and its algorithms to guarantee deadlock-
freedom.

The drawbacks comprise the fact that one has to generate certificates and check them which may be a time
consuming task [Ble08, BPH07].

1.1 Our Approach

Our methodology for guaranteeing the absence of deadlocks is depicted in Figure 1. It shows the process
and infrastructure of certifying deadlock-freedom of BIP models. BIP models are passed to D-Finder,
the certificate generation (denoted CertGen) and the Coq theorem prover. The D-Finder tool generates
invariants and uses them to decide whether a system is deadlock free or not. The same invariants are
presented to the theorem prover as part of the certificate. The certificate comprises these invariants and a
proof script that is generated by the certificate generator. The Coq theorem prover uses this proof script to
prove that a BIP model is indeed deadlock free. Not shown in the figure are generation mechanisms for
creating theorem prover representations of BIP models and invariants.

Higher order-order theorem provers like Coq allow the use of relatively easily human readable spec-
ifications. The process of proving properties is, however, much more complicated than in first-order or
special purpose theorem provers. High automatation and fast proof searching and checking are usually not
primary design goals for higher-order theorem provers. The challenges encountered in this work are highly
influenced by these characteristics of higher-order theorem provers.
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Figure 1: Our Methodology

1.2 Proving Deadlock-freedom
We break the task of verifying deadlock-freedom for a given BIP model BM down into different subtasks
as shown in Figure 2. These are combined to prove a human readable formalization of deadlock-freedom
correct for a given BIP model. In the figure we use the following definition of enabled states capturing BIP
states from which a state transition to a succeeding state is possible:

EnabledBM (s) ≡ ∃s′.(s, s′) ∈ JBMKBIP

The JBMKBIP denotes the set of possible transitions of the BIP model BM . Furthermore, we use the
following definition of reachable states of a BIP system:

ReachableStatesBM (s) ≡

s = sBM 0∨
∃s′.ReachableStatesBM (s′) ∧ (s′, s) ∈ JBMKBIP

}
smallest fixpoint

It is inductively defined demanding that the initial state sBM 0 is reachable and each state that can be
reached from it via transitive state transitions.

The task of verifying deadlock-freedom is refined as shown in Figure 2:

1. The top line in the figure shows our notion of deadlock-freedom for a BIP model. This is what we
ultimately want to prove correct. We demand that all reachable states have at least one succeeding
state. Thus, there is no reachable state where no succeeding state transition is possible.

2. Instead of proving the first line directly, we can conduct the proof shown in the second line. More-
over, we have to prove that whenever one proves the second line correct the first line is implied. The
second line reformulates the notion of enabled states and puts a predicate ¬DISBM instead. Thus,
we may verify that the second line holds for a BIP model BM . In order to show that the first line
is indeed implied – guaranteeing the more human readable notion of correctness – we have to show
that ∀s.¬DISBM (s) =⇒ EnabledBM (s) holds.

3. The third line introduces an invariant II(s) ∧ CI(s) as a transitive step. This invariant is part of the
actual certificate. To use this line in our proofs we have to show that it also implies the first line.
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∀s.ReachableStatesBM (s) =⇒ EnabledBM (s)

⇑ (∀s.¬DISBM (s) =⇒ EnabledBM (s))

∀s.ReachableStatesBM (s) =⇒ ¬DISBM (s)

⇑ transitivity

∀s.ReachableStatesBM (s) =⇒ II(s) ∧ CI(s) and ∀s.II(s) ∧ CI(s) =⇒ ¬DISBM (s)

⇑

∀s.ReachableStatesBM (s) =⇒ II(s) ∧ CI(s) and ∀s.II(s) ∧ CI(s) ∧DISBM (s) ≡ false

Figure 2: Verifying Deadlock-freedom: The Meta-Proof

4. The fourth line is a slight reformulation of the third. In order to use it, we have to show that it also
implies the first line.

We call the implications between the lines, the meta-proof. Of course, we can use transitivity between lines
to conduct this proof. It can be either done once and for all or we can also use a certifying technique to
conduct it. However, unlike the meta-proof, the proof of an actual line in the figure demands its instantiation
with a concrete BIP model. Hence, a certifying technique as propagated in this paper should be applied.

While some of the tasks to show deadlock-freedom seem to be trivial to us we have identified some
tasks that seem especially challenging:

• The derivation of an automatic proof scheme to prove:

∀s.ReachableStatesBM (s) =⇒ II(s) ∧ CI(s)

in a time efficient way.

• Proving that:

∀s.II(s) ∧ CI(s) ∧DISBM (s) ≡ false

holds in a time efficient way.

The first item is completely new and captures the correctness of the main task of the D-Finder tool: finding
invariants. The work presented in this paper concentrates on the first item. The second item is already done
in the D-Finder tool. It does, however, need to be redone in Coq if one wants to keep the trusted computing
base small. In this work we concentrate on the first item.

1.3 Related Work

To the authors’ knowledge certifying deadlock-freedom with higher-order theorem provers has not been
studied before. An early description of certifying techniques and their advantages is given in [BK95].
Certificate checkers for the results of sorting, matrix rank and greatest common divisor computations are
presented.

Verification and validation tools generating certificates have been studied on model checkers. The
idea first appeared in [Nam01]. A certifying model checker is regarded. The presented technique aims
at generating certificates which comprise among other items invariants for use within an ad’hoc proof
system. In [Nam03] the methodology is used with lifting proofs between a system and its abstraction.
The generation of support sets for a model checker is described in [TC02]. These sets can be used as a
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certificate and an algorithm for checking them is given. Unlike in our work the formalization of a human
readable notion of correctness is not a goal in these works.

Related to the work presented in this paper is Proof-carrying code [Nec97]. It is a method to certify
pieces of code to guarantee that they fulfill distinct properties – typically on access and resource manage-
ment. A piece of code is given together with a certificate to code users. They can ensure themselves that
the desired properties hold by using the certificate. The certificate checker contains 23000 lines of C code.
In [HJM+02] a model checker is used as certificate checker. Foundational proof-carrying code [App01] is a
variant of proof-carrying code that uses higher-order logic for the formulation of an operational semantics,
a small set of axioms and the checking of the certificates. In particular [WAS03] focuses on the problem
of keeping both, the checker and the certificate small. Their certificate checker comprises only 803 lines
of C code. Like foundational proof carrying code, we want to certify that a property – deadlock-freedom
– holds for a system and base this decision on a small set of axioms formalized in a higher-order theorem
prover.

Certifying techniques have been studied in the context of compilers. Most notably translation valida-
tion [PSS98, ZPG+05, Nec00] provides checkers that check compilation results after each compiler run. In
the original work [PSS98], however, these checkers are not using explicit certificates. Furthermore, these
approaches are not based on formal semantics or some explicit notion of correctness. However, [TL08]
demonstrates a formally verified certificate checker based on formal semantics formalized in Coq. Further-
more, [BPH07] discusses certifying code generation with respect to formal semantics. [BSPH07] ports this
approach to verify the transformation of state transition systems.

1.4 Overview
The remainder of this paper is structured as follows: Section 2 presents our formalization of BIP models and
their semantics in Coq. In Section 3 we discuss how to verify that invariants appearing in our certificates
do hold for distinct BIP models. How this is used to ensure deadlock-freedom is demonstrated in Section 4.
We draw a conclusion and present our directions of future work in Section 5.

2 Formalizing BIP Models in Coq
In this section we describe the formalization of BIP models in the language of the Coq theorem prover. We
do a shallow embedding of BIP models in Coq. Thus, in contrast to a deep embedding, we do not have a
syntactical representation, but use state transition systems to represent a BIP model’s semantics. These are
directly formalized in Coq.

BIP models are composed of atomic components [BBS06, BBNS08]. Atomic components are state
transition systems. They can be composed into larger components. Atomic components communicate via
ports with each other. Composed components are state transition systems, too.

Atomic Components

An atomic component can be represented as a state transition system given by a tuple
(L,P, T, V, {gτ}τ∈T , {fτ}τ∈T ) such that:

• L = {l1, l2, ..., lk} is a set of control locations,

• P is a set of ports,

• T ⊆ L× P × L is a set of transitions,

• V is a set of variables. It is used by variable valuations: mappings from variables to their values. The
type of a variable valuation is denoted X ,

• for each τ ∈ T there is a guard gτ : X ⇒ bool and an update function fτ : X ⇒ X . We call a set of
transitions TE extended transitions for a set of transitions T if they contain their guard and update
functions: τ = (l, p, l′) ∈ T iff (l, gτ , fτ , p, l′) ∈ TE .
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The semantics of an atomic component can also be represented as a state transition system given by a tuple
(Q,P,TX ) such that:

• Q is a set of states, each has the type L×X .

• P is a set of ports.

• TX is a set of variable valuations including transitions: ((l, x), p, (l′, x′)) ∈ TX iff gτ (x) and
x′ = fτ (x) for some τ = (l, p, l′) and τ ∈ T .

Atomic components are formalized very close to their mathematical definition (shown here) in Coq.

Composed Components

Atomic components Bi may be composed into bigger components in our case such components are for-
malized as tuples:

(B1, ..., Bn)

They interact via interactions which we formalize in Coq as a set of tuples. Each element in this set
represents one possible way of component interaction. It has the following form:

(p1, ..., pn)

Each component pi in the tuple corresponds to component Bi and contains either a port that needs to
be active in the corresponding atomic component in order to do a state transition or it states that the com-
ponent is not involved in this interaction.

The states encountered by components composed of atomic components have the type:

(L×X)× ...× (L×X)

Figure 3 shows the definition of the BIP semantics. Furthermore, the definition of reachable states is
presented. The initial state of a BIP model is denoted s0 in this figure.

Both definitions use n extended state transition relations for atomic components TE 1 ... TEn, and the
set of interactions interactions . Furthermore, the definition of the semantics makes use of an initial state.

The semantics of a BIP model is shown first. It is defined by a state transition inference rule. This
rule defines the set of possible state transitions for a BIP model BM : JBMKBIP . A state transition is
possible if there is an interaction – the list of active ports – such that there is in each component either a
possible state transition labeled with the port or the component is not involved in the interaction. The latter
is denoted by port 0 in the interaction. Furthermore, in order to do a transition in an atomic component the
appropriate guard functions must evaluate to true. To derive the succeeding states the update functions are
performed on the variable valuations of the involved atomic components.

The set of reachable states is defined very similar to the semantics. The first item formalizes that the
initial state is always reachable. The second item says that if there is a possible state transition from a
reachable state from the semantics definition, this succeeding state is also reachable. The definition is
inductive meaning that we take the smallest fixpoint of the set defined by the rules.

Figure 4 shows the definition of reachable states from an initial state s0 comprising a state transition
rule for a BIP model in Coq. We have formalized an independent state transition rule for each number of
atomic components in a BIP model. This is due to the fact that we are not able to deal with the li, gi, fi ,pi,
l′i variables in a convenient way. Each of them stands for a couple of different variables (destinguished by
i) in the definition in Figure 3. In Coq, we mention them explicitly.

Note, that neither the D-Finder tool nor our certifying deadlock-freedom methodology works on the full
BIP language. Most notably we have omitted priorities of interactions – which could be added relatively
easy – and hierachical composition of components.

Technical Report no TR-2008-1 5/12
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Semantics of a BIP model

(p1, ..., pn) ∈ interactions
∀i.((li, gi, fi, pi, l

′
i) ∈ TE i ∧ gi(xi) ∧ x′

i = fi(xi)) ∨ (li = l′i ∧ pi = 0 ∧ x′
i = xi)

(((l1, x1), ..., (ln, xn)), (p1, ..., pn), ((l′1, x
′
1), ..., (l

′
n, x′

n))) ∈ JBMKBIP

Reachable States of a BIP model

s0 ∈ ReachableStatesBM (s0)

((l1, x1), ..., (ln, xn)) ∈ ReachableStatesBM (s0) (p1, ..., pn) ∈ interactions
∀i.((li, gi, fi, pi, l

′
i) ∈ TE i ∧ gi(xi) ∧ x′

i = fi(xi)) ∨ (li = l′i ∧ pi = 0 ∧ x′
i = xi)

((l′1, x
′
1), ..., (l

′
n, x′

n)) ∈ ReachableStatesBM (s0)

Figure 3: Semantics of BIP models

reachablestates
(s0: ((L × X ) × (L × X )))
(TE1: set (L × (X → bool) × (X → X) × P × L))

...
(TEn: set (L × (X → bool) × (X → X) × P × L))
(interactions: set (P × ... × P)):
(((L × X) × ... × (L × X))) → bool :=

1. reachablestates s0 T1 ... Tn interactions init

2. ∀ l1 ... ln x1 ... xn.
reachablestates s0 T1 ... Tn interactions ((l1,x1),...,(ln,xn)) −→
∀ g1 f1 l’1 x’1 p1 ... gn fn l’n x’n pn.

(p1,...,pn) ∈ interactions −→
((l1,g1,f1,p1,l’1) ∈ TE1 ∧ g1 (x1) ∧ x’1 = f1 (x1) ) ∨

(l1 = l’1 ∧ p1 = 0 ∧ x’1 = x1) −→
...

((ln,gn,fn,pn,l’n) ∈ TEn ∧ gn (xn) ∧ x’n = fn (xn) ) ∨
(ln = l’n ∧ pn = 0 ∧ x’n = xn) −→

reachablestates s0 TE1 ... TEn interactions ((l’1,x’1),...,(l’n,x’n ))

Figure 4: Semantics of BIP in Coq
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Figure 5: Temperature Control System

An Example
Figure 5 shows a temperature control system [BBNS08, ACH+95] modeled in BIP. It controls the cooling
of a reactor by moving two independent control rods. The goal is to keep the temperature between θ = 100
and θ = 1000. When the temperature reaches the maximum value one of the rods has to be used for
cooling. The BIP model comprises three atomic components one for each rod and one for the controller.
Each contains a state transition system. Transitions are labeled with guard conditions, variable valuation
updates, and a port. The components interact via ports thereby realizing cooling, heating, and time elapsing
interactions.

3 Verifying Invariants
As described in Section 1.2 the task of showing that an invariant holds for all reachable states of a BIP
model is an important part of our methodology to prove deadlock-freedom of a BIP model. In this section
we examine a technique that addresses this task.

3.1 The Nature of State Predicates
State predicates defined on BIP models are predicates taking a BIP state (s) and returning a boolean value.
Invariants are given as state predicates defined on BIP models. Typical predicates used as invariants on our
BIP models have the following form:∧

CI1(s)
∧

...
∧

CIn(s)
∧

II1(s)
∧

...
∧

IIm(s)

The CI predicates encapsulate invariants of the different atomic components. The II predicates encap-
sulate invariant properties of interactions between atomic components. Both, CI and II predicates are
themselves made up of disjunctions of properties.

Thus, in our case state predicates are in general made up of multiple predicates – in the scheme below
denoted al k – which are already or can easily be grouped into a conjunctive normalform:∧

(a1 1(s) ∨ ... ∨ a1 i(s))
∧

...
∧

(an 1(s) ∨ ... ∨ an j(s))

Each predicate al k typically encapsulates a statement over a control location or an (in)equation about
a variable’s value.

If we want to automatically verify that a state predicate in conjunctive normal form as shown above
holds for given states in the Coq theorem prover we have to do the following:
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• We have to split the conjunctions up into n different subgoals:

subgoal 1 : a1 1(s) ∨ ... ∨ a1 i(s)
...

subgoal n : an 1(s) ∨ ... ∨ an j(s)

• We have to investigate for each subgoal whether an al k element holds.

Each al k itself can be made up of predicates that are grouped into a conjunctive normal form. Thus,
verifying a state poperty containing predicates of this form requires to split the subgoals they appear in,
into further subsubgoals. This scheme may be applied recursively. Proving whether an al k predicate holds
should be easier and especially less time consuming than proving the original state predicate. It can often
be done automatically by pre-defined tactics.

3.2 Inductive Invariants
This section describes a method to verify inductive invariants that are presented in conjunctive normal form
as shown above. We examine a method to prove that such an invariant holds for a given BIP model. While
invariants can be inductive, the set of reachable states of a BIP model is defined using induction, too.

Definition 3.1 ((Inductive) Invariants) A state predicate φ is an inductive invariant of a BIP model BM
with initial state s0 iff

s = s0 ∨ ((s1, s) ∈ JBMKBIP ∧ φ(s1)) −→ φ(s)
It is an invariant if there is an inductive invariant φ0 such that

φ0 −→ φ

Thus, for each invariant of a system there is always an inductive invariant that is at least as strong. Further-
more, we like to mention the following well known properties of invariants [BBNS08]:

Proposition 3.1 Let φ1, φ2 be two invariants of the same BIP model. Then φ1 ∧ φ2 and φ1 ∨ φ2 are also
invariants of this BIP model.

This proposition allows the verification of the CI and II predicates from an invariant of the form∧
CI1(s)

∧
...

∧
CIn(s)

∧
II1(s)

∧
...

∧
IIm(s)

independantly from each other as long as the CI and II predicates are themselves inductive.

3.2.1 Inductive Invariant Verification Algorithm

The fact that an inductive invariant holds for all reachable states of BIP models can be verified by induction.
Thereby we use the induction principle that comes together with the definition of reachable states: A state
is reachable iff

1. it is the initial state,

2. or it is the successor of a reachable state.

Using the Coq definition of reachable states such an induction principle is automatically generated by Coq
and can be applied within its environment.

Suppose we want to verify that the inductive invariant φ holds on all reachable states of a BIP model
BM , this means:

∀ s. ReachableStatesBM (s) −→ φ(s)

An induction on s using the induction principle from the definition of ReachableStatesBM as sketched
above turns this lemma into the following subgoals:
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1. Initial Case:

φ (s0 BM )

2. Induction Step:

∀ s s′.
φ (s) −→
(s, s′) ∈ JBMKBIP −→
φ (s′)

The initial case can be verified by using the technique from Section 3.1.

3.2.2 A General Algorithm for the Induction Step

In the step case we make a case distinction on φ. Assuming φ has the form:∧
(a1 1(s) ∨ ... ∨ a1 i(s))

∧
...

∧
(an 1(s) ∨ ... ∨ an j(s))

we split the verificatation of the step into different subgoals. Each of these subgoal assume a different
possible combination of the disjunct elements al k of φ. I.e. each subgoal has the following form:

∀ s s′.
(a1 k(s) ∧ ... ∧ (an k′(s)) −→
(s, s′) ∈ JBMKBIP

−→
φ(s′)

Due to the fact that the number of possible combinations grows roughly exponential with the size of the
invariant the number of generated subgoals grows exponentially, too.

To verify such a subgoal we have to make a case distinction on possible state transitions ((s, s′) ∈
JBMKBIP ). This implies the way they modify the state via update functions. Thus, each of the subgoals
sketched above is transformed into the following form:

∀ l1 x1...ln xn.
(a1 k((l1, x1), ..., (ln, xn)) ∧ ... ∧ (an k′((l1, x1), ..., (ln, xn))

−→
φ((l′1, fg 1(x1)), ..., (l′n, fh n(xn)))

If a component is not involved in the interaction that lead to the succeeding state the update function is
the identity function and the location stays the same.

Matching the appropriate transition rules requires the unfolding of the involved components transi-
tion relations and the process of trying to match the unfolded rules against the original states. For larger
transition systems this has a notable effect on the theorem prover’s time performance.

Each of these subgoals should now be small enough to be solved by Coq with a standard tactic. In the
cases examined so far the al k predicates often encapsulate facts on inequalities between systems variables.
In such a case Coq’s omega tactic has turned out to be adequate.

3.2.3 A Refined Induction Step Verification

To verify that an invariant φ holds for a set of reachable states in the Coq theorem prover it is usually more
time efficient to split the verification of invariants that have a syntactically large representation into smaller
ones. Thus, it is a good choice to perform the following tasks:
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• If φ consists of a conjunction of invariants CIi or IIj as sketched above, we verify each of them
independently, since smaller invariants are easier automatically verified (see the above mentioned
increase of complexity).

• However, one major drawback is the fact that an invariant may not be inductive. In this case we have
to find some predicate IP such that IP ∧ CIi or IP ∧ IIj is inductive respectively.

• The resulting inductive invariants are verified using the algorithm sketched above. Each case in the
sketched case distinction should now contain at most two al k predicates: one from the CIi or IIj

predicate, the other one from the IP predicate.

Note, that unlike in model checking the presented technique does not only work for concrete instanti-
ations of states. If we have a concrete state instantiation we can check whether an invariant holds directly
by unfolding it and applying some theorem prover tactic. We usually regard states that are universally
quantified as sketched above. This procurement allows us to reason about possibly infinite sets of states.

4 Putting it all Together
The different parts of our methodology have to be implemented and put together as suggested in Section 1.1.

In Section 3.1 we proposed the fact that the time the theorem prover needs to decide whether an invariant
holds for a given system increases exponentially with the size of the invariant. This is confirmed by our
experimental results. Thus, checking whether an invariant holds or not seems to be a bottleneck of our
approach. Furthermore, the size of the systems in consideration have an effect on proving the induction step
correct. This is due to the fact that we have to determine possible state transitions leading to a succeeding
state. The larger these systems are, the more state transition rules have to be considered.

At the moment we are able to prove generated invariants correct for several case studies. Proving some
of the invariants from the example in Section 2 correct requires their strengthening to make them inductive.
We had to add the following properties to the invariants t1 >= 0, t2 >= 0, and the fact that if we are
at location l6, θ will always be even. D-Finder generates for this example three component and seven
interaction invariants (see [BBNS08] for a more detailed description of their generation). Nevertheless, the
second part, the proof that the invariants imply deadlock-freedom fails for this example, since it indeed
contains a deadlock. The verification of the invariants of this example can be done in Coq within a few
minutes on standard machines.

5 Conclusion and Future Work
In this paper we did present a methodology for certifying deadlock-freedom of BIP models using a higher-
order theorem prover. The use of a higher-order theorem prover allows us to verify deadlock-freedom
with respect to a human readable notion of deadlock-freeness. We did present a Coq formalization of BIP
semantics. Furthermore, we identified the main tasks that need to be done during certificate checking and
proposed first solutions to conduct these tasks.

Possible directions for future work comprise but are not limited to the following topics:

• Refine and improve the algorithm for inductive invariant verification.

• Establish a technique to make non-inductive invariants inductive by adding additional constraints.

• Implement the other tasks as shown in our meta-proof (cp. Figure 2).

• Improve the Coq formalization of the BIP semantics in a way that it allows the recursive composition
of components into larger components.

• Investigate the feasibility of other theorem provers than Coq for the tasks proposed in this paper.
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Jan Olaf Blech, Michaël Périn Certifying Deadlock-freedom

[TL08] J-B. Tristan and X. Leroy. Formal Verification of Translation Validators: A Case Study on
Instruction Scheduling Optimizations. In POPL ’08: Conference record of the 35rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, New York, NY,
USA, 2008. ACM Press. 1.3

[WAS03] D. Wu, A.W. Appel, and A. Stump. Foundational proof checkers with small witnesses. Pro-
ceedings of the 5th ACM SIGPLAN international conference on Principles and practice of
declaritive programming, pages 264–274, 2003. 1.3

[ZPG+05] L. Zuck, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and Y. Hu. Translation and Run-Time
Validation of Loop Transformations. Formal Methods in System Design, 27(3):335–360, 2005.
1.3

12/12 Technical Report no TR-2008-1


	Introduction
	Our Approach
	Proving Deadlock-freedom
	Related Work
	Overview

	Formalizing BIP Models in Coq
	Verifying Invariants
	The Nature of State Predicates
	Inductive Invariants
	Inductive Invariant Verification Algorithm
	A General Algorithm for the Induction Step
	A Refined Induction Step Verification


	Putting it all Together
	Conclusion and Future Work

