
Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

On Certificate Generation and
Checking for Deadlock-freedom of

BIP Models

Jan Olaf Blech, Michaël Périn

Technical Report no TR-2008-19

December 10, 2008

Reports are downloadable at the following address
http://www-verimag.imag.fr

http://www-verimag.imag.fr

On Certificate Generation and Checking for Deadlock-freedom of
BIP Models

Jan Olaf Blech, Michaël Périn

December 10, 2008

Abstract

The BIP framework provides a methodology supported by a tool chain for developing software
for embedded systems. The design of a BIP system follows the decomposition in behavior, in-
teraction and priority. The first step comprises the division of desired behavior of a system
into components. In a second step interactions and their priorities are added between the com-
ponents. Finally, machine code is generated from the BIP model. While adding interactions it
is possible to overconstrain a system resulting in potential deadlocks. The tool chain crucially
depends on an automatic tool, D-Finder, which checks for deadlock-freedom. This paper re-
ports on guaranteeing the correctness of the verdict of D-Finder. We address the problem of
formally proving deadlock-freedom of an embedded system in a way that is comprehensible
for third party users and other tools. We achieve this goal by automatically generating certifi-
cates for each BIP model declared safe by D-Finder. These certificates comprise a proof of
deadlock-freedom of the BIP model which can be checked by an independent checker. We use
the Coq theorem prover as certificate checker. Thus, bringing the high level of confidence of a
formal proof to the deadlock analysis results. With the help of certificates one gets a deadlock-
freedom guarantee of BIP models without having to trust or even take a look at the deadlock
checking tool. Part of the proofs encapsulated in certificates are invariants of considered BIP
models. Their checking is an important subtask to guarantee deadlock-freedom of the given
BIP model.

Keywords: certificate generation, invariants, theorem proving, Coq

Reviewers:

Notes:

How to cite this report:

@techreport {TR-2008-19,
title = {On Certificate Generation and Checking for Deadlock-freedom of BIP Models},
authors = {Jan Olaf Blech, Michaël Périn},
institution = {VERIMAG},
number = {TR-2008-19}
}

Certifying Deadlock-freedom Jan Olaf Blech, Michaël Périn

1 Introduction
In many areas the development of embedded systems is shifting to software development methodologies
working at high levels of abstraction known as Model Driven Engineering. The goal is to develop a model
of a system, conduct analyses, perform simplifications and refinement at a high abstraction level and finally
automatically generate an implementation. The approach crucially depends on the correctness of the tools
used in the development tool chain.

In this paper we present our work on automatic generation and checking of certificates in the form of
machine checkable proofs ensuring deadlock-freedom, to increase the reliability of the BIP tool chain used
in development of software for embedded systems.

BIP [BBS06] is a software framework designed for building embedded systems consisting of hetero-
geneous components. It is characterized by three modeling layers: behavior of components encoded as
transition systems extended with variables, interactions between components realized via communication
ports and priority rules which reduce non-determinism between interactions (BIP stands for Behaviors +
Interactions + Priorities). Apart from code generation the BIP tool chain comprises static analyses tools
for checking properties like deadlock-freedom. Deadlock-freedom can be difficult to establish and is espe-
cially crucial for systems with complex component interaction. Therefore, BIP models are analyzed using
the D-Finder [BBNS08] tool to discover potential deadlocks. D-Finder consists of a static analyzer discov-
ering invariant properties of components and a model-checker guaranteeing the unreachability of potential
deadlock configurations. Among other application areas the BIP language has been successfully applied in
the synthesis of robot controllers [BGL+08, BGI+09].

We use a certifying approach to guarantee deadlock-absence in BIP models. This means that we gen-
erate for each successful run of D-Finder a certificate – a proof of deadlock-freedom – comprising as a
main ingredient a proof that invariants provided by D-Finder for the BIP model hold. Thus, each usage
of the D-Finder tool for a particular system is verified independently after it has been performed. Using
this certificate, the BIP model, an easily human understandable formalization of deadlock-freedom, and the
Coq [The07] theorem prover serving as certificate checker, developers and users can ensure themselves of
the deadlock-freedom without having to trust D-Finder, its algorithms and implementation.

For checking certificates we rely on the proof-checker of the higher-order theorem prover Coq. Certifi-
cates are proof scripts for Coq. The Coq proof-checker is realized as a type-checking algorithm based on
very few typing rules which restricts possible deductions to well-formed mathematical reasoning. Hence,
the proof is correct if each proof step respects the typing constraints (see [BD04] for more details).

Coq features the ability to formalize semantics of BIP models and the notion of deadlock-freedom in a
human readable way. Our Coq representations of BIP models directly reflect all modeling decisions without
containing further abstractions. Thus, it can serve as basis to verify various transformations and analysis
results.

Using our methodology the only parts that have to be trusted to guarantee deadlock-freedom of a BIP
model are the proof checker of the Coq theorem prover, our notion of deadlock-freedom and semantics
definition. Using certifying techniques has – among others – the following advantages over non certifying
verification techniques: Easiness, we do not need to verify the algorithm and implementation of the D-
Finder tool, but only distinct runs. Robustness, if the implementation of D-Finder changes slightly there is
often no need to adapt certificate generation. Privacy there is no need to give access to the D-Finder tool
and its algorithms to guarantee deadlock-freedom.

1.1 Our Approach
An excerpt of the BIP methodology is shown in Figure 1. BIP models are developed using analysis tools
including D-Finder. Finally we generate executable code. In principle each development process from
a BIP model to a deployable embedded system using the sketched tool chain could be proved correct –
including all transformations of BIP models. The correctness proof could be distributed within a certificate.
In this paper, however, we restrict ourselves to generating and checking certificates for the analysis results
of D-Finder.

Our methodology for generating certificates for D-Finder results guaranteeing the absence of deadlocks
is depicted in Figure 2. BIP models are passed to D-Finder, the certificate generation (denoted CertGen)

Technical Report no TR-2008-19 1/11

Jan Olaf Blech, Michaël Périn Certifying Deadlock-freedom

Interaction CodeComponent

generation

D−Finder &

other static analysis tools

modeling modeling

Figure 1: BIP Tool Chain (Excerpt)

D−Finder

BIP model

invariants

CertGen

certificate

Theorem Prover

notion of deadlock−freedom

(checked deadlock−freedom)

proved deadlock−freedom

Figure 2: Generating Certificates for D-Finder

and the Coq theorem prover. The D-Finder tool computes invariants and uses them to decide whether a
system is deadlock free or not. The certificate comprises these invariants and a proof script that is generated
by the certificate generator. The Coq theorem prover uses this proof script to prove that a BIP model is
indeed deadlock-free.

1.2 Proving Deadlock-freedom
Generating and checking D-Finder certificates in a theorem prover means to establish and conduct a formal
proof of deadlock-freedom.

We break the task of verifying deadlock-freedom for a given BIP model BM down into different sub-
tasks as shown in Figure 4. The proofs for these subtasks are then composed to prove the top line. In the
figure, we use the following definition of enabled states capturing BIP states from which a state transition
to a succeeding state is possible:

EnabledBM (s) def= ∃s′.(s, s′) ∈ JBMKBIP

The JBMKBIP denotes the set of possible state transitions of the BIP model BM thereby defining its
semantics. Furthermore, we use the definition shown in Figure 3 of reachable states of a BIP system with
s0 as initial state of BM . It is inductively defined demanding that the initial state is reachable and each
state that can be reached from it via transitive state transitions.

The task of verifying deadlock-freedom is performed by using the refinement shown in Figure 4:

ReachableStatesBM (s) def=
s = s0

∨ ∃s′.ReachableStatesBM (s′) ∧ (s′, s) ∈ JBMKBIP

}
smallest fixpoint

Figure 3: Reachable States Definition

2/11 Technical Report no TR-2008-19

Certifying Deadlock-freedom Jan Olaf Blech, Michaël Périn

1. ∀s.ReachableStatesBM (s) −→ EnabledBM (s)

↑ (∀s.¬DISBM (s) −→ EnabledBM (s))

2. ∀s.ReachableStatesBM (s) −→ ¬DISBM (s)

↑ transitivity

3. (a) ∀s.ReachableStatesBM (s) −→ II(s) ∧ CI(s) and
(b) ∀s.II(s) ∧ CI(s) −→ ¬DISBM (s)

Figure 4: Verifying Deadlock-freedom: The Meta-Proof

1. The top line in the figure shows our notion of deadlock-freedom for a BIP model. We ultimately
want to prove this line. We demand that all reachable states have at least one succeeding state. Thus,
there is no reachable state where no transition is possible.

2. Instead of a direct proof, we can conduct the proof shown in the second line. Furthermore, we
have to prove that whenever one proves the second line correct the first line is implied. The sec-
ond line reformulates the notion of enabled states and puts a predicate ¬DISBM instead. DISBM

characterizes the states of a BIP model where no further transition is possible. It is provided by
D-Finder but can be computed in an easy way using the definition of deadlock-freedom. Thus,
we may verify that the second line holds for a BIP model BM . To show that the first line is in-
deed implied – guaranteeing the more human readable notion of correctness – we have to show that
∀s.¬DISBM (s) −→ EnabledBM (s) holds.

3. The third line introduces as a transitive step invariants provided by D-Finder: II (interaction invari-
ant) and CI (component invariant) which characterize the behavior of a BIP model. These invariants
are part of the certificate. To use this line in our proofs we have to show that it also implies the first
line.

The decomposition of the proof follows the way D-Finder computes its results. The correctness of that
decomposition is verified within our certificates and is not a hard task. Most tasks in this proof scheme
are relatively easy from a technical point of view. D-Finder uses a standard SMT-solver to handle the
verification of the property
(3b) ∀s.II(s) ∧ CI(s) −→ ¬DISBM (s)
itself. On the other hand D-Finder computes the invariants II and CI using sophisticated algorithms in
a way that the property (3a) should hold. However, no a posteriori verification is conducted. Thus, the
automatic derivation of a proof script to prove that
(3a) ∀s.ReachableStatesBM (s) −→ II(s) ∧ CI(s)
really holds in a time efficient way is a challenging subtasks of our methodology. It captures the correctness
of the main task of the D-Finder tool: finding invariants. The work presented in the rest of this paper
concentrates on this task.

1.3 Related Work

To the authors’ knowledge certifying deadlock-freedom with higher-order theorem provers has not been
studied before.

Most related to our work is Proof-Carrying Code (PCC) [Nec97], a method to guarantee that exe-
cutable code fulfills a policy on access and resource management. Executable code is given together with
a certificate that is checked before execution. The checker consists of 23000 lines of C code. Foundational
PCC [WAS03] uses a small set of axioms and a simpler proof-checker (803 lines of C code). Thus, the
size of the trusted computing base is reduced. However, the formalization of the statement to be proved is
expressed in pure λ-calculus which is difficult for humans to read.

Technical Report no TR-2008-19 3/11

Jan Olaf Blech, Michaël Périn Certifying Deadlock-freedom

Furthermore, the translation validation approach [PSS98, ZPFG03] generating certificates for compila-
tion correctness was influential to us. In translation validation the compiler is regarded as a black box with
at most minor instrumentation. For each compiler run, source and target program are passed to a separate
checking unit comprising an analyzer generating proofs. These proofs are checked with a proof checker.
A translation validation approach and implementation for the GNU C compiler is described in [Nec00]. A
translation validation checker (called validator) has been formally verified in [TL08]. Compilers generating
proof scripts for Isabelle and Coq as certificates have been studied for code generation [BG08, BPH07].

The generation of proofs to certify the verdict verification tools was first introduced in [Nam01] for
a model checker. The certificates are given in an ad’hoc proof-system that is not supported by a proof-
checker. Informative certificates (support sets) are used in [TC02]. They contain information about a
model-checker’s computations. However, support sets can only be checked using a dedicated special pur-
pose tool. In [HJM+02], the BLAST model-checker for C code is extended keeping track of justifications
from some simplification steps performed. A complete proof of correctness is not the goal in this work.

In this paper we focus on achieving three important properties of certificates and their checking/proving:
1) human readable specifications, 2) production of complete proofs in a format supported by 3) a trustable
proof/certificate-checker (Coq is accepted by some certification authorities).

1.4 Overview
The remainder of this paper is structured as follows: Section 2 presents our formalization of BIP models in
Coq. In Section 3 we discuss how to verify invariants appearing in our certificates. Section 4 introduces the
certificate generation mechanism. An evaluation is given in Section 5. We draw a conclusion and present
our directions of future work in Section 6.

2 Formalizing BIP Models in Coq
In this section we describe the formalization of BIP models in the language of the Coq theorem prover.
BIP models are composed of atomic components [BBS06] [BBNS08] that can be composed into larger
components. Components are state transition systems. They communicate via ports with each other. An
atomic component Bi can be represented by a tuple (Li, Pi, Ti, Vi) such that

• Vi is a set of variables,

• Li = {l0i , l1i , l2i , ..., lki } is a set of control locations,

• Pi is a set of ports,

• Ti ⊆ Li × (Xi → bool) × (Xi → Xi) × Pi × Li is a set of transitions, each one comprising a
location, a guard function g : Xi → bool, an update function f : Xi → Xi, a port, and a succeeding
location. The Xi denote variable valuations: mappings from variables Vi to their values.

The atomic components of a BIP model are connected via ports. They communicate via interactions.
Thus, a composed component is defined as a tuple ((B1, ..., Bn), Interactions) comprising the atomic
components and their interactions. An interaction is a tuple (p1, . . . , pn) where pi is a port of the atomic
component Bi or⊥ if Bi is not involved in this interaction. The state of an atomic component Bi is a tuple
(li, xi) comprising a location and variables’ valuations. The state of a BIP model is the product of the state
of its atomic components: (L1 ×X1)× . . .× (Ln ×Xn).

Figure 5 shows the definition of the reachable states of a BIP model. The first rule says that the initial
state is reachable. The second inference rule captures the entire semantics of BIP. A state transition from
a given reachable state is possible if there is an interaction such that there is in each component either a
possible state transition labeled with the port or the component is not involved in the interaction. Further-
more, in order to do a transition of an atomic component the appropriate guard functions must evaluate
to true. To derive the succeeding states the update functions are performed on the variable valuations of
the involved atomic components. Not shown in the definition are priorities of interactions – which can be
added relatively easy. The presented definition is the Coq realization of the reachable states definition from
Section 1.2. Most importantly it contains the definition of the state transition relation JBMKBIP .

4/11 Technical Report no TR-2008-19

Certifying Deadlock-freedom Jan Olaf Blech, Michaël Périn

s0 ∈ ReachableStates (s0)
where s0 ∈ (L1 ×X1)× . . .× (Ln ×Xn)

((l1, x1), ..., (ln, xn)) ∈ ReachableStates (s0) (p1, . . . , pn) ∈ Interactions
∀i ∈ {1..n}. (li, gi, fi, pi, l

′
i) ∈ Bi ∧ (gi(xi) ∧ x′

i = fi(xi)) ∨ (li = l′i ∧ pi = ⊥ ∧ x′
i = xi)

((l′1, x
′
1), ..., (l

′
n, x′

n)) ∈ ReachableStates (s0)

Figure 5: Definition of Reachable States in Coq

tick

l6

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

t1 := t1 + 1

tick1

tick1

cool1
t1 := 0

rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2
t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ 3600 t2 ≥ 3600

Rod1 Controller Rod2

Figure 6: Temperature Control System

An Example Figure 6 shows a temperature control system [BBNS08, ACH+95] modeled in BIP. It con-
trols the cooling of a reactor by moving two independent control rods. The goal is to keep the temperature
between θ = 100 and θ = 1000. When the temperature reaches the maximum value one of the rods has
to be used for cooling. The BIP model comprises three atomic components one for each rod and one for
the controller. Each contains a state transition system. Transitions can be labeled with guard conditions,
variable valuation updates, and a port. The components interact via ports thereby realizing cooling, heat-
ing, and time elapsing interactions. To give a look and feel for the generated Coq formalization of the
example system, the encoding of the set of state transitions in the atomic Controller component are shown
in Figure 7: a set of tuples, each consisting of a location, a guard function, an update function, a port, and a
succeeding location, concatenated by :: is defined. fun X => E is the Coq syntax for a function taking
an argument X and returning some expression E.

Currently neither the D-Finder tool nor our certifying deadlock-freedom methodology works on the full
BIP language. Most notably we have omitted hierarchical composition of components.

Definition Controller : list (L * (X -> Prop) * (X -> X) * P * L) :=
(L5, fun X => X(theta)=1000, fun X => X, cool, L6)::
(L5, fun X => X(theta)<1000, fun X => fun v => if v==theta then X(theta)+1 else X(v), tick, L5)::
(L6, fun X => X(theta)=100 , fun X => X, heat, L5)::
(L6, fun X => X(theta)>100 , fun X => fun v => if v==theta then X(theta)-2 else X(v), tick, L6)::
nil.

Figure 7: Coq Representation of an Atomic Component

Technical Report no TR-2008-19 5/11

Jan Olaf Blech, Michaël Périn Certifying Deadlock-freedom

3 Proving Inductive Invariants
As described in Section 1.2 the task of showing that an invariant holds for all reachable states of a BIP
model is an important part of our methodology to prove deadlock-freedom of a BIP model. In this section
we examine a technique that addresses this task.

Inductive Invariant Verification Invariants of BIP models are given as state predicates that take a BIP
state s and return a boolean value. A state predicate φ is an invariant of a BIP model iff

∀s. ReachableStates (s) ⇒ φ(s).
This is proved by performing an induction resulting in the following subgoals that need to be proved:

• φ(s0) holds,

• ∀s, s′. φ(s) ∧ (s, s′) ∈ [[BM]]BIP −→ φ(s′) holds

Typical predicates used as invariants on our BIP models have the following form:

φ
def=

∧
CI1(s)

∧
...

∧
CIn(s)

∧
II1(s)

∧
...

∧
IIm(s)

The CI and II predicates are made up of disjunctions of basic properties. The CI predicates are compo-
nent invariants: one for each atomic component. The first of the three component invariants of the example
from Figure 6 is the following fact (ati states that we are at location i):

CI1
def= (atl1 ∧ 0 <= t1) ∨ (atl2 ∧ 3600 <= t1)

The II predicates capture invariant properties of interactions thereby putting some constraints on the en-
tire system. In the example from Figure 6 the synchronization through interactions makes some compo-
nent locations incompatible (for instance assuming an initial state of the form (l1, , l5, , l3,), any state
(l1, , l6, , l3,) is not reachable). Instead of considering the whole conjunction φ, we prove each CI i, II i

independently, since smaller invariants are easier automatically verified. They are verified using a case dis-
tinction to cope with the disjunction of basic properties appearing in the invariant. Specialized Coq tactics
are applied to verify the different cases.

A more detailed version of this algorithm is described in a technical report [BP08].

4 Generating the Certificates
The certificates stating deadlock-freedom of a BIP model are generated for each BIP-model individually.
They are provided in a textual representation and formulated in the description and proof language of the
Coq theorem prover. The specification part of this language has expressional features similar to those of
functional programming languages plus logical formulae. Proof scripts consist of tactic applications. Tactic
applications transform proof goals into other proof goals, split proof goals into several subgoals, or solve
a prove goal. They can be combined in various ways resulting in new tactics. Most notably are sequential
composition and the application of tactics to all subgoals of another tactic.

A certificate, written in the Coq specification and proving language, comprises three parts:

1. A Coq representation of the BIP model,

2. A lemma stating an invariant definition accompanied by a proof script. The proof script algorithmi-
cally encapsulates the proof that the invariant does indeed hold,

3. A lemma stating correctness of deadlock-freedom accompanied by a proof script. This proof script
references the lemma stating the invariants from above.

Most interesting to this paper is the second item. The proof scripts for it are automatically generated
by a small program as shown in Figure 2. It takes the BIP model (more precisely the number of atomic

6/11 Technical Report no TR-2008-19

Certifying Deadlock-freedom Jan Olaf Blech, Michaël Périn

Lemma CI1_invariant:
forall s,
ReachableStates s -> (at_l1 s /\ 0 <= val_t1 s) \/ (at_l2 s /\ 3600 <= val_t1 s).

Figure 8: Generated Proof Script: Stating the Lemma

components, their transition rules, possible interactions between components) and the definition of the
invariant to be proved correct as arguments. These arguments come with various name and type definitions
appearing in the BIP model which are used in the script generation, too. The following parts are generated:

1. First we state the actual property to be proved in a lemma. Figure 8 shows the Coq statement to
prove for establishing that the property CI1 stated in Section 2 is indeed an invariant.

2. The proof starts with an induction on the definition of reachable states. The base case is resolved by
a special tactic without any system specific adaptation of the proof script.

3. Based on the structure of the invariant the proof script is generated in a way that it splits the invariant
into independently verifiable subgoals.

4. Based on the interactions defined in the BIP model, each subgoal is split again into further subgoals
realizing a case distinction on the possible interactions between components.

5. Most crucial in the generation of the proof script is another splitting of subgoals into additional
subgoals. This realizes a case distinction on possible transitions. In principle we have to examine
every combination of transitions from each atomic component to fulfill the semantics state transition
rule (cp. Figure 5 of Section 2). The proof script is generated such that we exploit the previous case
distinctions to resolve contradictions in the assumptions as soon as possible to prevent an exponential
blowup of cases.

6. Each remaining case represents a very distinct execution step of a BIP model. Showing that the
invariant holds afterwords is done by some specialized proof tactics which depend on the class of
guards used in the BIP model. In the examples we encountered, guards are arithmetic (in-)equalities
and the subgoals are discarded by calls to the Coq inequality and quantifier elimination solver, called
omega.

An excerpt of the generated proof script realizing the fifth generation step for the example BIP model from
Section 2 is shown in Figure 9. We present it to show that the case distinctions follow the shape of the
BIP model and to highlight the regularity of proof scripts. Three blocks for the main part realizing case
distinctions for the three components can be distinguished. The ... contains a number of definition names
occurring in component and invariant definitions. Inside the three blocks the case distinctions – triggered
by the innermost destruct tactic calls – on possible transitions inside the three components takes place:
the handling of the four possible transitions can be observed. Each component in a tuple from a transition
rule defintion is assigned a name using the tactic injection. Since we are dealing with one transition at
a time, we reuse the names in the handling of different transitions. At the end of each block, contradictions
that have occurred so far are resolved via the try congruence tactic.

Note that there is no need for humans to read the proof script to validate a certificate. To be convinced,
a sceptical human evaluator who trusts the Coq proof checker, only has to check the formalization of the
BIP semantics, the formalization of deadlock-freedom and the automatic translation of BIP models into
their COQ representation. If something declared by D-Finder as invariant of a BIP model turns out not to
be invariant, the proof fails. Our certification process revealed some weaknesses of D-Finder such as over
simplifications due to external well-knowned simplifiers used in D-Finder.

5 Evaluation
We have implemented a generator of Coq representations of BIP models in Java using the abstract syntax
tree representation provided by the BIP tool chain. The proof script generation is implemented in Ocaml.

Technical Report no TR-2008-19 7/11

Jan Olaf Blech, Michaël Périn Certifying Deadlock-freedom

cbv delta[...] in I;
try injection I as Iport3 Iport2 Iport1 ;
(destruct C1 as [(C1a,(C1b,x1behavior))|(C1a’,(C1b’,x1behavior))];
[

unfold set_In in C1a;
unfold Rod1transrel in C1a; cbv delta[...] in C1a;
unfold In in C1a;
destruct C1a as [C1a1 | [C1a1 | [C1a1 | [C1a1 | False]]]] ;
[
injection C1a1 as succlabel1 port1 f1behavior g1behavior prevlabel1 |
injection C1a1 as succlabel1 port1 f1behavior g1behavior prevlabel1 |
injection C1a1 as succlabel1 port1 f1behavior g1behavior prevlabel1 |
injection C1a1 as succlabel1 port1 f1behavior g1behavior prevlabel1 |
try contradiction]

|
idtac]); try congruence;
(destruct C2 as [(C2a,(C2b,x2behavior))|(C2a’,(C2b’,x2behavior))];
[

unfold set_In in C2a;
unfold Rod2transrel in C2a; cbv delta[...] in C2a;
unfold In in C2a;
destruct C2a as [C2a1 | [C2a1 | [C2a1 | [C2a1 | False]]]] ;
[
injection C2a1 as succlabel2 port2 f2behavior g2behavior prevlabel2 |
injection C2a1 as succlabel2 port2 f2behavior g2behavior prevlabel2 |
injection C2a1 as succlabel2 port2 f2behavior g2behavior prevlabel2 |
injection C2a1 as succlabel2 port2 f2behavior g2behavior prevlabel2 |
try contradiction]

|
idtac]); try congruence;
(destruct C3 as [(C3a,(C3b,x3behavior))|(C3a’,(C3b’,x3behavior))];
[

unfold set_In in C3a;
unfold Controllertransrel in C3a; cbv delta[...] in C3a;
unfold In in C3a;
destruct C3a as [C3a1 | [C3a1 | [C3a1 | [C3a1 | False]]]] ;
[
injection C3a1 as succlabel3 port3 f3behavior g3behavior prevlabel3 |
injection C3a1 as succlabel3 port3 f3behavior g3behavior prevlabel3 |
injection C3a1 as succlabel3 port3 f3behavior g3behavior prevlabel3 |
injection C3a1 as succlabel3 port3 f3behavior g3behavior prevlabel3 |
try contradiction]

|
idtac]); try congruence;

Figure 9: Generated Proof Script: Case Distinction on Transitions

8/11 Technical Report no TR-2008-19

Certifying Deadlock-freedom Jan Olaf Blech, Michaël Périn

Most component and interaction invariants are inductive and can be verified by the sketched principle.
However, some approximations are performed by D-Finder that can result in non-inductive invariants. In
such cases, we manually strengthen them by adding further constraints thereby making them inductive.

At the moment, we are able to prove the correctness of generated invariants for several case studies.
Proving some of the invariants from the example in Section 2 correct requires their strengthening to make
them inductive. We had to add the following properties to the invariants: t1≥0, t2≥0, and the fact that if
we are at location l6, θ is even. D-Finder generates for this example three components and seven interaction
invariants (see [BBNS08] for a more detailed description of their generation). The time to verify them takes
a few minutes using the proof scripts from our certificates. However, the second part, the proof that the
invariants imply deadlock-freedom fails for this example, since it indeed contains a deadlock.

6 Conclusion and Perspectives
In this paper we extended the BIP tool chain such that it generates certificates proving deadlock-freedom
of BIP models. We identified the process of proving invariants provided by D-Finder as the main task of
certifying deadlock-freedom. We implemented a first solution to conduct this task that consists in auto-
matically generating proof scripts establishing the validity of the verdict provided by D-Finder. We use
the COQ higher-order theorem prover as certificate checker. In addition to its high-reliability, it enables a
human readable formalization of the notion of deadlock-freedom and BIP semantics.

We implemented a certificate generator that produces proof scripts proving invariants on BIP models
which is the most challenging task in certifying D-Finder computations. Furthermore, we implemented the
translation of BIP models into Coq representations.

As central contribution of this paper, we showed that it is possible to increase the confidence in a verifi-
cation tool which is part of a tool chain for the synthesis of embedded systems by generating independently
checkable certificates. Directions for future work comprise but are not limited to the following topics:

• Extension of D-Finder, our semantics formalization, and the proof-generator such that they are able
to work on hierarchical components and use typed ports between them.

• Implement the other tasks as shown in our meta-proof (cp. Figure 4). For efficient large scale cer-
tificate generation and checking this might involve the extension of Yices, a SMT-solver, to produce
certificates that are compatible with and can be used inside Coq certificates. This work could be
reused in other certificate generating scenarios involving SMT-solvers.

• To achieve a fully certifying tool chain including code generation for BIP models we identified the
following tasks:

1. Proving the conformance of the BIP engine to the formal BIP semantics.

2. Establishing a certifying code generation phase for BIP. This could be a very long term goal.
It does not only involve to deal with optimizations appearing during code generation, but also
handling language features like multi threading for which to the authors’ knowledge up till now
no practicably applicable methodology exists.

3. Proving the race-freedom between components. Race conditions are eliminated using priorities
in BIP.

Furthermore, we want to investigate, if we can take advantage of the structure of a BIP model comprising
subsystems to improve the structure and checking of certificates.

References
[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin, A. Olivero,

J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138(1):3–34, 1995. 2

Technical Report no TR-2008-19 9/11

Jan Olaf Blech, Michaël Périn Certifying Deadlock-freedom

[BBNS08] S. Bensalem, M. Bozga, H. Nguyen, and J. Sifakis. Compositional deadlock detection and
verification for component-based systems. Verification and Evaluation of Computer and Com-
munication Systems, 2008. 1, 2, 2, 5

[BBS06] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in BIP. In
SEFM, pages 3–12, 2006. 1, 2

[BD04] Y. Bertot and P. Castran. Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Springer-Verlag, 2004. 1

[BG08] J. O. Blech and B. Grégoire. Certifying code generation with coq. In Proceedings of the 7th
Workshop on Compiler Optimization meets Compiler Verification (COCV 2008), Budapest,
Hungary, ENTCS. April 2008. 1.3

[BGI+09] S. Bensalem, M. Gallien, F. Ingrand, I. Kahloul, T-H. Nguyen. Toward a More Dependable
Software Architecture for Autonomous Robots. IEEE Robotics and Automation Magazine. to
appear 1

[BGL+08] A. Basu, M. Gallien, C. Lesire, T-H. Nguyen, Saddek Bensalem, Felix Ingrand and Joseph
Sifakis. Incremental Component-Based Construction and Verfication of a Robotic System.
ECAI 2008 The 18th European Conference on Artificial Intelligence, Patras, Greece, July 21 -
25, 2008. 1

[BP08] J. O. Blech and M. Périn. Towards certifying deadlock-freedom for BIP models. Technical
Report TR-2008-1, Verimag, September 2008. 3

[BPH07] J. O. Blech and A. Poetzsch-Heffter. A certifying code generation phase. In Proceedings
of the 6th Workshop on Compiler Optimization meets Compiler Verification (COCV 2007),
Braga, Portugal, ENTCS, March 2007. 1.3

[HJM+02] T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and W. Weimer. Temporal-
safety proofs for systems code. Proc of CAV ’02, 2002. Springer-Verlag. 1.3

[Nam01] K. S. Namjoshi. Certifying model checkers. Proc of CAV ’01, 2001. Springer-Verlag. 1.3

[Nec97] G. C. Necula. Proof-carrying code. In POPL ’97, pages 106–119, New York, NY, USA, 1997.
ACM. 1.3

[Nec00] G. C. Necula. Translation validation for an optimizing compiler. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages
83–95, 2000. 1.3

[PSS98] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. Lecture Notes in Computer
Science, 1384:151+, 1998. 1.3

[TC02] L. Tan and R. Cleaveland. Evidence-based model checking. Proc of CAV ’02, London, UK,
2002. Springer-Verlag. 1.3

[TL08] J-B. Tristan and X. Leroy. Formal Verification of Translation Validators: A Case Study on
Instruction Scheduling Optimizations. In POPL ’08: Conference record of the 35th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, New York, NY,
USA, 2008. ACM Press. 1.3

[The07] The Coq Development Team. The Coq Proof Assistant Reference Manual – Version 8.1, 2007.
http://coq.inria.fr. 1

[WAS03] D. Wu, A.W. Appel, and A. Stump. Foundational proof checkers with small witnesses. Pro-
ceedings of the 5th ACM SIGPLAN international conference on Principles and practice of
declaritive programming, 2003. 1.3

10/11 Technical Report no TR-2008-19

Certifying Deadlock-freedom Jan Olaf Blech, Michaël Périn

[ZPFG03] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A methodology for the translation vali-
dation of optimizingcompilers. Journal of Universal Computer Science, 9(3):223–247, March
2003. 1.3

Technical Report no TR-2008-19 11/11

	Introduction
	Our Approach
	Proving Deadlock-freedom
	Related Work
	Overview

	Formalizing BIP Models in Coq
	Proving Inductive Invariants
	Generating the Certificates
	Evaluation
	Conclusion and Perspectives

