
Certifying Compilers based on FormalTranslation Contra
tsMarek Jerzy Gawkowski, Jan Olaf Ble
h, Arnd Poetzs
h-He�ter
Internal ReportNo. 355/06
November 2006

Computer S
ien
e DepartmentUniversity of Kaiserslauternfgawkowsk, ble
h, poetzs
hg�informatik.uni-kl.deAbstra
t. A translation
ontra
t is a binary predi
ate
orrTransl(S ;T)for sour
e programs S and target programs T . It pre
isely spe
i�es whenT is
onsidered to be a
orre
t translation of S. A
ertifying
ompilergenerates {in addittion to the target T{ a proof for
orrTransl(S ;T).Certifying
ompilers are important for the development of safety
riti-
al systems to establish the behavioral equivalen
e of high-level programswith their
ompiled assembler
ode. In this paper, we report on a
ertify-ing
ompiler, its proof te
hniques, and the underlying formal frameworkdeveloped within the proof assistent Isabelle/HOL. The
ompiler uses atiny C-like language as input, has an optimization phase, and generatesMIPS
ode. The underlying translation
ontra
t is based on a tra
e se-manti
s. We investigate design alternatives and dis
uss our experien
es.

1 Introdu
tionThe
ompiler is a
ru
ial part in the development of software systems. Mostsoftware systems are des
ribed in high-level model or programming languages.Their runtime behavior, however, is
ontroled by the
ompiled
ode. For un
rit-i
al software it might be suÆ
ient to just test the runtime behavior of the
ode.If an error is dete
ted, it might be
aused by the programmer, by the
ompiler,or by a semanti
al ambiguity1. For
riti
al software, it is of great importan
ethat stati
 analyses and formal methods
an be applied on the sour
e
ode level,be
ause this level is more abstra
t and better suited for su
h te
hniques. How-ever, the analysis results
an only be
arried over to the ma
hine
ode level, ifwe
an establish the
orre
tness of the translation. Thus, translation
orre
tnessis essential to
lose the formalization
hain from high-level formal methods tothe ma
hine-
ode level.Sin
e more than thirty years resear
hers have worked on the problem of trans-lation
orre
tness (see Se
t. 2 for a review of related work). We
an distinguishtwo general approa
hes to establish the
orre
tness of a translation2:{ Certi�ed
ompiler : Prove (a) that the algorithms of the
ompiler de�ne a
orre
t translation for all given well-formed input programs (
ompiler algo-rithm
orre
tness) and (b) that the algorithms are
orre
tly implemented ona given ma
hine (
ompiler implementation
orre
tness). We
all a
ompilerfor whi
h ma
hine
he
ked proofs for both parts are developed a
erti�ed
ompiler (algorithm/implementation).{ Certifying
ompiler : Provide a proof that a target program is a
orre
t trans-lation of a sour
e program whenever su
h a translation is performed. It isimportant to noti
e that these proofs do not make a statement about analgorithm or its implementation, but only about the relation of two pro-grams. Di�erent te
hniques have been developed to automati
ally generatesu
h proofs (see Se
t. 2). If the
ompiler generates | in addition to thetarget program T | a ma
hine-
he
kable proof that T
orre
tly implementsits sour
e program, we
all it a
ertifying
ompiler and the generated proofa translation
erti�
ate.Compared to
ompiler
erti�
ation, the te
hnique of
ompilers
ertifying theirresults has two advantages. First, the issue of implementation
orre
tness
an be
ompletely avoided, that is, we do not have to trust the implementation of the
ompiler algorithms on a hardware system or prove it
orre
t (
f. [17℄ on thisproblem). Se
ond, similar to the proof
arrying
ode approa
h ([12, 11, 1℄), thete
hnique provide a
lear interfa
e between
ompiler produ
er and user. In the
erti�ed
ompiler approa
h,
ompiler users need a

ess to the
ompiler
orre
t-ness proof to assure themselves of the
orre
tness. Thus, the
ompiler produ
er1 E.g. the programmer might assume a parti
ular evaluation order of expressions thatis not realized by the used
ompiler.2 We follow the notions given in [9℄ and slightly re�ne them based on a dis
ussion atthe Dagstuhl Seminar 05311 \Verifying Optimizing Compilers".

has to reveal the internal details of the
ompiler whereas the translation
erti�-
ates
an be independent of
ompiler implementation details. The disadvantagesof the
ertifying
ompiler approa
h is that users have to
he
k the
erti�
ates forea
h (
riti
al)
ompilation and this
he
k might fail if the
ompiler has a bug.In the last two years, we
onstru
ted an optimizing
ertifying
ompiler thatgenerates proof s
ripts as
erti�
ates. More pre
isely, our approa
h is
hara
ter-ized by the following three aspe
ts (
f. [17℄):1. Ma
hine-
he
kability and independen
e of logi
: All spe
i�
ations and proofsare ma
hine-
he
kable based on a formal general logi
, that is, a logi
 thatis independent of languages and te
hniques used in the translation. We useIsabelle/HOL as our spe
i�
ation and veri�
ation framework.2. Translation
ontra
t: We require an expli
it translation
ontra
t formallyspe
ifying the semanti
s of sour
e and target language and the translation
orre
tness predi
ate
orrTransl(S ;T) expressing the fa
t that T is a
orre
ttranslation of S.3. Certifying
ompiler: We are interested in a te
hnique where the
ompilergenerates proof s
ripts as
he
kable
erti�
ates.Ma
hine-
he
kability is advisable be
ause of the
omplexity and size of the prooftasks. Using a logi
al framework that is not spe
i�
ally developed for the trans-lation task and used in many other areas, in
reases the
on�den
e in the frame-work. Of
ourse, as argued in [17℄, a framework in whi
h only a very small
orehas to be trusted is desirable. An expli
it translation
ontra
t plays the roleof the spe
i�
ation of the proof task. It is the
ontra
t between produ
er and
lient of the
ompiler and should thus be available to and
omprehensible forthe
lient. In parti
ular, it
an and should be independent of the stru
ture andalgorithms of the
ompilers satisfying the
ontra
t.We developed our
ertifying
ompiler to gain experien
e with the des
ribedapproa
h and to
reate a testbed for the validation of di�erent te
hniques togenerate ma
hine-
he
kable
erti�
ates. The te
hniques
an di�er in the needede�orts to instrument the
ompiler for
erti�
ate generation, in the stru
tureand size of the
erti�
ate, and the eÆ
ien
y of
he
king
erti�
ates. The mainte
hni
al
ontributions of this paper are:{ Te
hniques for stru
turing the
erti�
ation into program dependent and in-dependent parts.{ The appli
ation of the approa
h to tra
e-based translation
ontra
ts.{ A re�ned te
hnique to automate
ontra
t veri�
ation.{ Methods to
ombine proof te
hniques to
onstru
t
ertifying
ompilers.{ First experimental results, experien
es, and te
hni
al propositions on howto run proofs more eÆ
iently. (To the best of our knowledge, we are the �rstwho implemented this approa
h and gained pra
ti
al experien
e withit.)As in this se
tion, S denotes a sour
e program and T a target programthroughout this paper.

Overview. After the dis
ussion of related work in Se
t. 2, we explain translation
ontra
ts and spe
ify the
ontra
t for our
ompiler (Se
t. 3). Se
t. 4 presents ourproof te
hniques and des
ribes how
erti�
ates are generated. Se
t. 5 shows howother proof te
hniques
ould be integrated into our approa
h. Se
t. 6 des
ribesour experimental results and te
hniques to make
erti�
ate
he
king more eÆ-
ient. Se
t. 7
ontains the
on
lusions.2 Related WorkRinard et al. present in [18, 19℄ the
redible
ompilation approa
h for
ertifying
ompilers. In parti
ular, they provide dedi
ated proof rules to verify programinvariants, even for programs with pointers. Our work builds on their approa
hand extends it by the notion of an expli
it translation
ontra
t. Other distin
tionsare that we looked at a semanti
s based on output streams and that
entral partof our
ontribution is the implementation of the approa
h based on a generalhigher-order proof assistant.Proof
arrying
ode [12℄ is a framework for guaranteeing that
ertain re-quirements or properties of a
ompiled program are met, e.g. type safety or theabs
en
e of sta
k over
ows. That is, the
arried proof
erti�es a property onlydepending on T whereas we are interested in a property depending on S and T.In [10℄, Ne
ula and Lee des
ribed a
ertifying
ompiler for their approa
h guar-anteeing that target programs are type and memory safe. What is related toour work, is the
lear separation between the
ompilation infrastru
ture and the
he
kable
eriti�
ate. That is why many te
hniques developed for proof
arrying
ode apply as well to our approa
h (e.g. [1℄).A large body of resear
h has been done on
erti�ed
ompilers. Here, we
anonly give an overview of the di�erent areas of work. In [9℄, the algorithms for asophiti
ated multi-phase
ompiler ba
k end are proved
orre
t within the Coqtheorem prover. In order to a
hieve a trusted implementation of the algorithm, itis exported dire
tly from the theorem prover to program
ode. A similar approa
hbased on Isabelle/HOL is presented in [7℄. The veri�
ation of an optimizationalgorithm is des
ribed in [2℄; it uses a simulation proof for showing semanti
alequivalen
e. In an important step in the dire
tion of automating the generation of
orre
t program translation pro
edures is explained in [8℄. There, a spe
i�
ationlanguage is des
ribed for writing program transformations and their soundnessproperties. The properties are veri�ed by an automati
 theorem prover.In the translation validation approa
h [16, 20℄ the
ompiler is regarded as abla
k box with atmost minor instrumentation. For ea
h run, sour
e and targetprogram are passed to a separate
he
king unit
omprising an analyzer generat-ing proofs. These proofs are
he
ked with a proof
he
ker. If the proof
he
kersays OK, both programs are regarded as semanti
ally equivalent. A translationvalidation approa
h and implementation for the GNU C
ompiler is des
ribedin [13℄. The paper [5℄ exampli�es that a
ompiler
erti�
ate
he
ker implemen-tation may be mu
h easier to verify than a
on
rete
ompiler algorithm (andits implementation). The Veri�x proje
t [6, 3℄ had the goal to a
hieve
orre
t

proof checker

proof generating
compiler

proof script for

target program Tsource program S

compiler−specific parts, e.g:translation contract:

specification of
− source language SL
− target language TL
− correct translation

 SL * TL −> bool
corrTransl:

translation correct: yes/no

− analysis formalizations

Is
ab

el
le

/H
O

L

− specification of inter−
mediate languages

− derived properties

corrTransl(S,T)

Fig. 1. Certifying
ompiler infrastru
ture
ertifying
ompiler infrastru
ture
ompilation, too. Te
hniques and formalisms for
ompiler result
he
kers, de-
omposition of
ompilers, and notions of semanti
al equivalen
e of sour
e andtarget program were developed.3 Translation Contra
t and Che
king Infrastru
tureIn this se
tion, we des
ribe translation
ontra
ts, the
he
king infrastru
ture, andexplain how it is realized for our
ompiler. Figure 1 gives an overview of the
er-tifying
ompiler infrastru
ture for our approa
h. Spe
i�
ation and veri�
ation isdone in a general proof assistant for higher-order logi
. We use Isabelle/HOL [14℄for this purpose. The spe
i�
ations are divided into the
ompiler-independenttranslation
ontra
t (shown on the left of Fig. 1) and de�nitions and proper-ties that are
ompiler-spe
i�
, but program independent (shown on the right ofFig. 1). Typi
ally, the
ompiler-spe
i�
 part
ontains de�nitions and propertiesof program analyses and intermediate languages. Given S, the
ertifying
om-piler generates T and a proof s
ript as
erti�
ate. Running this proof s
ript bythe proof
he
ker establishes the
orre
tness of
orrTransl(S ;T). In our
urrentsetting, sour
e and target programs are given as abstra
t syntax trees. Pars-ing of
on
rete syntax is not
onsidered so far. The proof must in
lude proofsfor all
ompiler-spe
i�
 properties that are used, that is, it builds only on thetranslation
ontra
t. In the following, we des
ribe the translation
ontra
t forour
ompiler. The
ompiler-spe
i�
 de�nitions and properties are presented inSe
t. 4.Our
ompiler reads programs written in a small C subset, translates theminto a
ontrol
ow graph (FGL), performs
onstant folding (CF), dead assign-ment elimination (DAE) and loop invariant hoisting (LIH) on the
ow graph,and �nally generates MIPS
ode (CG) (see [15℄). The
urrent implementationof proje
t only
overs optimization and
ode generation. We
onsidered these

de
lareint a [4℄ = f2,�5,47,�4g;int i = 0;beginl1 : print i ;l2 : print a[i ℄;l3 : i := i+1;l4 : if (i<5) l1;l5 : exit ;end
Program P ; S ;T := ([vd ; : : : ; vd ℄; [ins; : : : ; ins℄)VarDe
l vd := (id ; �; v)Instru
tion ins := l : lval := e j l : print e jl : bran
h e l j l : goto l j l : exitExpression e := o j o1 bop o2 j unop oLValue lval := id j id [n℄ j id [id ℄Operand o := i j id j id [n℄ j id [id ℄Value v := i j arrvArray arrv := (�; [i ; : : : ; i ℄)Type � := int j int [n℄bop 2 f+;�; �;^;_;=; 6=; <;�g; unop 2 f�;:gid 2 Identi�er ; l 2 Label ; i 2 integer ; n 2 natFig. 2. Example and syntax of language FGLphases �rst, be
ause they are more
hallenging from a veri�
ation point of view.Consequently, the translation
ontra
t spe
i�es the
ow graph language FGL, theused MIPS subset MSub and the translation
orre
tness predi
ate
orrTransl .Sour
e Language. Our sour
e language is the
ow graph language FGL support-ing variables of primitive types, arrays, simple assignments, a print statementto output an integer,
onditional and un
onditional bra
hes, and an exit state-ment. Figure 2 presents a simple program example and the de�nition of theabstra
t syntax3. As we are interested in the
ompilation of both terminat-ing and nonterminating programs4, we use a semanti
s based on sequen
es ofoutputs produ
ed by the print instru
tions. (Similarly, we
ould handle reads.)More pre
isely, the semanti
s of a program is denoted by a pair (s; o): s
apturesthe termination Status: Token NORMAL indi
ates normal termination, ABRUPTabrupt termination, NONTERM nontermination. The se
ond
omponent o is apossibly in�nite sequen
e of integers. In�nite sequen
es are modeled as fun
tionso : nat ! integer [fundefg where o is either de�ned for all elements of nator for all k 2 [0 : : : n℄; n 2 nat . We
all nat or [0 : : : n℄ the domain of o, denotedby dom(o). The k-th output of the program is o(k). The type of the outputfun
tions is named Output.The interesting parts of the operational semanti
s of FGL are given in Fig. 3.The main te
hni
al diÆ
ulty is to handle nontermination and in�nite output.We use the number of exe
ution steps to indu
tively de�ne the semanti
s asfollows. A program
on�guration
onsists of the label of the
urrent instru
tion,the state of the variables, the status of the exe
ution, and the output produ
ed sofar. Ea
h
omponent of the
on�guration has its
orresponding sele
tor fun
tion.If the
urrent termination status is NORMAL or ABRUPT, stepFGL does not
hange the
on�guration; otherwise it exe
utes the instru
tion at the given la-bel and yields the resulting
on�guration. As it is standard, we dispense with3 To keep the presentation short, we slightly simpli�ed our language for this paper.4 Nonterminating programs o

ur for example in
ontroler software.

Status = fNORMAL;ABRUPT;NONTERMgCon�guration = Label � State � Status �OutputstepFGL : Program �Con�guration �! Con�gurationnstepFGL : nat� Program� Configuration �! ConfigurationnstepFGL(0; P; C) = CnstepFGL(n+ 1; P; C) = nstepFGL(n; stepFGL(P;C))runFGL : nat� Program �! (Status�Output)runFGL(n; P) = if :wellFormed (P) then (ABRUPT; � n: undef) elselet(l; �; s; o) = nstepFGL(n; P; (l0; initFGL(P);NONTERM; � n: undef)) in (s; o)semFGL : Program �! (Status �Output)semFGL(P) = if 9n: runFGL(n; P) == (NORMAL; o) then (NORMAL; o)elseif 9n: runFGL(n; P) == (ABRUPT; o) then (ABRUPT; o)else (NONTERM; � k: if 9n: k 2 dom(output(runFGL(n; P)))then
hoose n: k 2 dom(output(runFGL(n; P)))in output (runFGL(n; P))(k)else undef)Fig. 3. Semanti
s of language FGLthe formal de�nition of stepFGL. Fun
tion nstepFGL performs n steps. Fun
tionrunFGL
he
ks whether a program P is well-formed, runs P for n steps with ini-tial state initFGL(P) that is extra
ted from the variable de
laration, and sele
tsthe result from the �nal
on�guration. The semanti
 fun
tion semFGL expressesthe overall behavior of a program P . If P terminates after n steps, semFGL yieldsthe
orresponding result. Otherwise, the k-th output is obtained by looking for anumber n of program steps that produ
e at least k outputs. If su
h an n exists,let the program run n steps and take the k-th outputs. Otherwise the outputfun
tion remains unde�ned for k.Target Language. As target language, we use MSub, a subset of the MIPS as-sembler [15℄. An MSub program is a list of MIPS instru
tions. In parti
ular,we support the following instru
tions: integer addition, subtra
tion, multipli-
ation, the
ompare operation \set less than",
onditional and un
onditionalbran
hes, store and load instru
tions, system
all instru
tions for output andreturn. Abrupt termination is indi
ated by setting a dedi
ated
ag and
allingreturn. The formalization is very similar to that of FGL. The main di�eren
eis that MSub uses registers and addressable memory as storage. The fun
tionsstepMSub , nstepMSub , runMSub, and semMSub are almost de�ned as in Fig. 2.Translation Corre
tness Predi
ate. The
orre
tness predi
ate
orrTransl(S ;T)de�nes when T is
onsidered to be a
orre
t translation of S. It should beindependent of the developed
ompiler. For our
ompiler and in
omparable

(l0;m0) (l1;m1) (l2;m2) (l3;m3) (l4;m4) (l3;m5) (l4;m6) (l3;m7)(k0;m00) (k1;m01) (k3;m02) (k4;m03) (k3;m04) (k4;m05) (k3;m06)R R R RoS0i0 i1 oS1i2 oS2i3
oT0i00 i01 oT1i02 oT2i03

S :
T : Fig. 4. Runtime behavior of programs S and Tps
enarios, one
an simply use the equality of the semanti
s of sour
e and targetlanguage to de�ne
orrTransl :
orrTransl(S; T) =def (semFGL(S) = semMSub(T))For full-blown programming languages, the
orre
tness predi
ate
an be
omemore
omplex. One reason is nondeterminism in the sour
e language, for ex-ample
aused by
on
urren
y
onstru
ts. Another reason is the use of boundedressour
es. For example, the sour
e language semanti
s might not
apture pro-gram abortion due to la
k of memory. Then, a translation of sour
e S might be
onsidered
orre
t, if the target obey S's semanti
s as long as there is enoughmemory and aborts otherwise.4 Proof Te
hnique for Certifying TranslationsThis se
tion explains the simulation-based proof te
hnique that we use in our
ertifying
ompiler. It des
ribes how the proofs are stru
tured into program-independent and program-dependent parts and how the generated program-dependent parts look like.As it is the
ase for most
ompilers, we assume that translations are dividedinto a number of phases, ea
h phase having a sour
e and target language. Forexample, our
ompiler
onsists of �ve phases, one that translates the C subsetinto the intermediate language FGL, three optimization phases with FGL assour
e and target language, and �nally the
ode generation produ
ing MSub
ode. We show for ea
h5 phase the semanti
 equality semS (S) = semT (T). Theproof of our
orre
tness predi
ate follows by transitivity of equality.<<<<<<< .mine ======= >>>>>>> .r4574.1 Simulation Proof for a Single PhaseSemanti
 equality of a single phase is shown by a simulation-based te
hnique (forthe ba
kground e.g. [4℄). Figure 4 illustrates the underlying proof idea. It shows5 As said above, the proof generation for the �rst phase is not yet implemented.

the exe
ution tra
es of a sour
e program and a target program
onsisting of labelslj and kj resp. and states mj and m0j . The outputs ij and i0j are given above andbelow the tra
es. The simulation proof is based on a stati
 de
omposition of the
ow graphs of S and T into paths of �nite length. Ea
h �nite path is regardedas an atomi
 step in our simulation proof.The de�nitions of the
ow graphs for FGL and MSub are straightforward.We assume that nodes are identi�ed by their labels, and that the su

essorrelation is denoted by su

. A path � of length j�j is a non-empty list of la-bels �(0); : : : ; �(j�j) su
h that su

(�j ; �j+1). For
onstant folding (CF), deadassignment elimination (DAE), and
odegeneration (CG), we only need a de-
omposition te
hnique with non-overlapping paths where all paths starting inthe same node have the same length. For CF the length of all paths in sour
eand target is one. For DAE the paths in the sour
e may be longer than one,
on-taining one live assignment and several dead assignments; in the target pathshave the length one. For CG the length of all paths in the sour
e is one and inthe target one or larger. For optimizations modifying the program stru
ture, likeour loop invariant hoisting (LIH), we developed a de
omposition te
hnique withoverlapping paths. For brevity, we only
onsider a simpler de
omposition here.The simulation-based proof te
hnique is the same for both
ases.A de
omposition for a program PL of language L with labels BL is formalizedas a fun
tion dL : BL ! nat su
h that dL(l) > 0 i� l is the start node of a path.In that
ase dL(l) is the length of the paths starting at l. Otherwise, dL(l) iszero, indi
ating that dL is not de�ned for l. The details of dL and de�nition ofwell-formedness are given in the appendix.The informal idea underlying the simulation proof is that whenever we startsour
e program S and target T in
on�gurations satisfying the simulation invari-ant R (see Fig. 4) and then iteratively follow a path in S and the
orrespondingpath in T , we rea
h
on�gurations that satisfy R. In the following, we des
ribethose aspe
ts of the proof te
hnique in more detail that we need to explain whi
hparts of the proofs are program-independent and whi
h parts are generated. Forany program P with initial
on�guration
P0 , a wellformed de
omposition dPde�nes a sequen
e of
on�gurations
Pi by
Pi+1 =def nstep(dP (label(
Pi)); P;
Pi)and a sequen
e of partial outputs oPi su
h that output(
Pi)
on
atenated withoPi equals
Pi+1, that is, oPi is the output generated by exe
uting the instru
tionsof a path starting at label(
Pi).For any sour
e and target programs S and T and wellformed de
ompositionsdS and dT , a binary relation R[S; dS ; T; dT ℄ over the
on�gurations of S and Tis
alled a simulation invariant i�R[S; dS; T; dT ℄(
S0 ;
T0) ^8 i 2 nat: R[S; dS ; T; dT ℄(
Si ;
Ti) =)R[S; dS; T; dT ℄(
Si+1;
Ti+1) ^ status(
Si+1) = status(
Ti+1) ^ oSi = oTiThe
orre
tness proofs of all phases are based on the following program-indepen-dent main lemma that is proved on
e and used in all program dependent proofs:

Lemma 1. (bisimulation lemma) For any S and T with wellformed de
ompo-sitions dS and dT , if there exists a simulation invariant R[S; dS ; T; dT ℄, then Sand T are semanti
ally equivalent, that is, semSL(S) = semTL(T)The task of a
ertifying
ompiler is to
ome up with appropriate de
om-positions dS and dT , a relation R[S; dS ; T; dT ℄ over
on�gurations, and a proofthat R[S; dS ; T; dT ℄ is a simulation invariant. The invariant typi
ally
onsists ofprogram-independent and program-dependent parts. The program-independentparts
apture the behavior underlying the optimization or translation phase.Program-dependent are the label relation CLABS expressing the
orresponden
ebetween the labels of sour
e and target and further information relevant for theparti
ular phase. We demonstrate this in the following subse
tion.4.2 Phase-spe
i�
 Simulation RelationsIn this subse
tion, we explain the simulation relations for
onstant folding and
ode generation.Simulation Relation for CF. As
onstant folding only modi�es the instru
tionsof the sour
e program, but not the
ow graph stru
ture, we
an use the trivialde
omposition where all paths have length one and CLABS is the equality onlabels. This is illustrated on the left-hand side of Fig. 5. Thus, the only program-dependent part of the simulation relation RCF is the result of the ConstantFolding Analysis. The analysis result �S : B(S) ! (Identifier ,! integer)maps the label set B(S) of the sour
e program S to partial fun
tions
apturingfor a subset of the variables in the program a
onstant value. For example, �S(l)
aptures for all variables that are dete
ted to be
onstant at l their values.Based on this information, RCF is de�ned by:RCF [S; dS ; T; dT ℄(�S)((l;m; s; o); (l0;m0; s0; o0)) =def let inv = �S(l) inl = l0 ^m = m0 ^ s = s0 ^ o = o0 ^ 8 id 2 dom(inv): inv(id) = m(id)Simulation Relation for CG. The simulation relation RCG for the
ode gener-ation depends on the relation CLABS of labels in sour
e and target and onthe allo
ation of variables to registers and memory
ells. As illustrated in Fig. 5,CLABS maps FGL labels to labels of MSub instru
tions su
h that paths in FGLhave length one and paths in MSub are usually larger than one. Allo
ation is de-s
ribed as a mapping � from the identi�ers Identif [S℄ of program S to adresses.An address is a register number or a memory address. The predi
ate isArr[S℄(id)indi
ates whether id denotes an array in S. In that
ase, indi
es[S℄(id) denotesthe set of allowed indi
es.RCG[S; dS; T; dT ℄(CLABS; �)((l;m; s; o); (l0; (regs;mem); s0; o0))) =def(l; l0) 2 CLABS ^ s = s0 ^ o = o0 ^8 id 2 Identif [S℄):(:isArr[S℄(id) ^ �(id) 2 dom(regs)^m(id) = regs(�(id)))_ (:isArr[S℄(id) ^ �(id) 2 dom(mem)^m(id) = mem(�(id)))_ (isArr[S℄(id) ^ 8n 2 indi
es[S℄(id):(�(id) + 4 � n) 2 dom(mem) ^m(id; n) = mem(�(id) + 4 � n))

li : x = 3;li+1 : y = y + xli+2 : if y < 25 ljS dS li : x = 3;li+1 : y = y + 3li+2 : if y < 25 ljS0 dS0 kj : ADDI $7 $0 3kj+1 : ADD $8 $8 $7kj+2 : SLTI $9 $8 25kj+3 : BGTZ $9 kj
T dT

CLABSCF = f(l; l0) j l = l0gCLABSCG = f: : : ; (li; kj); (li+1; kj+1); (li+2; kj+2); : : :gdT = f: : : ; (kj 7! 1); (kj+1 7! 1); (kj+2 7! 2); : : :gdS = dS0 = �x: 1� = f: : : ; (x 7! 7); (y 7! 8); : : :g

CLABSCF CLABSCG
CF CG

Fig. 5. Corresponding label relation for CF and CG4.3 Proof GenerationThis subse
tion des
ribes the proof parts generated by the
ompiler for a givenphase and program. (The proof for a multi-phase translation is obtained byusing the transitivity of equality; see above.) As illustrated for RCF and RCG,the simulation relations are parameterized by sour
e and target programs, bythe
ow graph de
ompositions, and by some phase-spe
i�
 information like forexample � and �. Based on the knowledge on S and T , the
ompiler generatesthe following spe
i�
ations for the proof assistant:1. De�nions for programs, the
ow graph de
ompositions, the relation CLABS,and the phase-spe
i�
 information psinfo .2. A proof s
ript showing that the de
ompositions dS and dT are well-formed.3. Proof s
ripts showing phase-spe
i�
 properties (e.g. the inje
tivity of theallo
ation mapping �).4. A proof s
ript showing that R[S; dS ; T; dT ℄(psinfo)(
S0 ;
T0) holds for the ini-tial
on�gurations.5. For ea
h pair of labels (l; l0) 2 CLABS a lemma of the form given in Fig. 6.These lemmas are
alled simulation-blo
k lemmas.6. Proof s
ripts for the simulation-blo
k lemmas.7. A proof s
ript showing that the simulation-blo
k lemmas imply thatR[S; dS ; T; dT ℄(psinfo) is a simulation invariant and that applies the bisim-ulation lemma to obtain the
orre
tness of the
onsidered phase.The simulation-blo
k lemmas in their
on
rete form, that is, with all program-dependent parameters instantiated express that running one or a small num-ber of instru
tions on the sour
e side has the same e�e
t as running a
ertainnumber of instru
tions on the target side. For given S and T , there is a �-nite number of simulation-blo
k lemmas and ea
h lemma
overs the exe
ution

8m;s; o;m0; s0; o0:R[S; dS; T; dT ℄(psinfo)((l; m; s; o); (l0;m0; s0; o0))=)let
 = nstepSL(dS(l); S; (l;m; s; o))and
0 = nstepTL(dT (l0); T; (l0;m0; s0; o0))in R[S; dS ; T; dT ℄(psinfo)(
;
0) ^ status(
) = status(
0) ^ output(
) = output(
0)Fig. 6. Lemma for simulation blo
ks starting at l and l0of
orresponding paths of S and T . As the paths
over the
ow graph of S, aproof by
ase distin
tion allows us to derive from the simulation-blo
k lemmasthat R[S; dS ; T; dT ℄(psinfo) is a simulation invariant and that the bisimulationlemma yields the overall proof goal. Ex
ept for this
ase distin
tion, most proofsare essentially rewriting proofs enfolding the semanti
s de�nitions for the in-stru
tions.5 Using Other Te
hniques for Certifying CompilersThe
entral idea of the
ertifying
ompiler approa
h is that the
lient of the
ompiler obtains a
he
kable
erti�
ate for the
orre
tness of a translation. Theveri�
ation te
hnique presented in the last se
tion is only one way to generate the
erti�
ates. Here, we shortly des
ribe and dis
uss how te
hniques for algorithmveri�
ation and translation validation
an be used for our goals.Algorithm Veri�
ation. Following a te
hnique sket
hed in [9℄, Se
t. 2,
orre
tnessproofs for all or some of the algorithms in a
ompiler
an be used to obtaintranslation
erti�
ates. Let us assume that the
ompilation algorithm is spe
i�edas a
omputable fun
tion
omp in the higher-order logi
 and that we have a
orre
tness proof for it, i.e. a proof for:8S:S 2 SL :
orrTransl(S;
omp(S))If an implementation i
omp of the
ompiler produ
es a target T for a sour
eprogram S, we
an
onstru
t a
erti�
ate for
orrTransl(S; T) by verifying
omp(S) = T using rewriting te
hniques and then instantiating the above gen-eral
orre
tness proof. The advantage of this approa
h over
ompiler
erti�
ationis that a proof of the implementation of i
omp is
orre
t
an be by passed. Theadvantage over our approa
h is that the
ompiler implementation needs no in-strumentation. Similar to our approa
h, the
onstru
tion of the
erti�
ate
anfail, namely if
omp(S) = T
annot be established. The disadvantages
omparedto our approa
h are the following:1. The
erti�
ates be
ome huge be
ause they in
ludes the
orre
tness proof forthe translation of all programs. Leroy suggests in [9℄ to mitigate this problemby developing te
hniques of spe
ializing proofs.

2. Che
king
omp(S) = T might be slower than
he
king dedi
ated
erti�
ates.3. To our experien
e, the proof of algorithm
orre
tness is more
omplex thanto proof the
orre
tness of the translation result.Translation Validation. As said above, one disadvantage of our approa
h is theinstrumentation of the
ompiler, be
ause instrumentation
auses developmente�ort and in
reases the
omplexity of the
ompiler. By using te
hniques fromtranslation validation, the last problem
ould be almost avoided. The idea is toredu
e instrumentation to a minimum and let the
ompiler only generate some\hints", for example, on the allo
ation of variables to memory
ells. Te
hniquesfrom translation validation (see in parti
ular [16℄)
ould then be used to
onstru
ta
omplete proof s
ript from these hints. Even more in the line of translationvalidation is a te
hnique that avoids expli
it proof s
ripts. Based on the strategyme
hanisms of the underlying proof assistant, one
ould develop proof ta
ti
sthat take the hints as input and dire
tly
onstru
t a proof from them, that is,one would implement translation validation using the me
hanisms of the proofassistant. This te
hnique allows to use algorithm-independent proof te
hniquesof Se
t. 4 with a minimum of program-dependent information. We applied thiste
hnique to an optimization phase. Our �rst experien
es are very en
ouraging.6 Evaluation and Performan
e IssuesThis se
tion brie
y dis
usses performan
e issues
on
erning the proof
he
king.The generated proof s
ripts are run by Isabelle/HOL and it is
he
ked whetherthey
orre
tly
onstru
t a proof. In the
urrent implementation of Isabelle/HOL,
he
king/
onstru
tion of proofs that our approa
h generates is rather slow.6 Sofar, we identi�ed the following reasons for this behaviour:{ Many steps in our proofs are of a
omputational nature. Exe
uting thesesteps in a theorem proving environment is very slow be
ause most of thesesteps are done by term rewriting on the data stru
ture underlying HOLformulas that is overly general and
omplex for our tasks.{ In our proof s
ripts, several steps still use ta
ti
s of the theorem prover thatdo some sear
h.{ Finding an optimal order for the appli
ation of ta
ti
s is
hallenging, par-tially be
ause the eÆ
ien
y properties of the proof assistant are diÆ
ult toanalyse.Con
erning the �rst item, we plan to
ompare with other provers. The problemstated as se
ond item may be solved by using lower level ta
ti
s or spe
ial userde�ned ta
ti
s. In the following part, we give a simple example of how to improvethe problem mentioned in the third item: Improving eÆ
ien
y by restru
turingthe underlying proof te
hniques.The time
onsuming part of a typi
al
ode generation
orre
tness proof is a
ase distin
tion on labels in FGL/MSub as des
ribed in Se
t. 4: For ea
h pair6 A

ording to our experien
e this is as well true for
omparable proof assistants.

of
orresponding labels in an FGL- and MSub-program, we have to prove thesimulation-blo
k lemma. As a straightforward approa
h to prove a single stepof the programs
orre
t, one
ould exe
ute the programs symboli
ally. Althoughsu
h proofs always su

eed in theory, they are forbiddingly slow to handle real-isti
 programs. The problem is that the approa
h needs a
ase distin
tion on allvariables involved in the program. And, every array element
ounts as a singlevariable in this distin
tion. Ea
h variable had to have a value equal to the
or-responding memory lo
ation. Thus, in ea
h step for every variable o

uring inthe FGL program the
orresponding memory lo
ation in the MSub program hadto be looked up. This
orrespondan
e relation between variables and memory isstored in a list. Using Isabelle ta
ti
s ea
h look up took O(v) time with v beingthe number of variables. Hen
e, the time to pro
ess the proof for steps of theprogram was in O(l � v2) with l being the length of the program.In our
urrent approa
h, we make use of the fa
t that ea
h step
an beproved
orre
t without looking at other variables not o

uring in the step ifthe allo
ation mapping � is inje
tive. Hen
e a variable's
orresponding memorylo
ation is not altered if some others variable's memory lo
ation is
hanged.With the help of this we
an dismiss of the last
ase distin
tion when provingthe inje
tivity of the mapping between variables and memory upfront. The proofof the steps
an be
ondu
ted in O(l � v). The proof of inje
tivity
an be donein time O(v) for non-pathologi
al
ases. Hen
e the
omplete proof
an be donein roughly O(l � v) time.7 Con
lusionFormal translation
ontra
ts are the requirements spe
i�
ation for the develop-ment of
erti�ed or
ertifying
ompilers. We used a
ontra
t that spe
i�es se-manti
al equivalen
e on the basis of output tra
es of the
onsidered sour
e andtarget language. This avoids to de�ne a relation between �nal program state and�nal memory state, and it supports nonterminating programs. We implementeda simple
ertifying
ompiler with optimization and
ode generation phases thatprodu
es ma
hine-
he
kable proof s
ripts. Whereas
urrent spe
i�
ation and ver-i�
ation te
hnology is suÆ
ient to express the translation
ontra
t, additionalproperties, and proofs in a fairly
onvenient way, the proof
he
king te
hnology
ould be improved: It is mainly targeted at
omplex intera
tive proofs and notsuitable to
he
k simple, but large proofs. Future work in
ludes the extension ofour
ompiler, as well as the appli
ation of the
he
king approa
h to other areasof software te
hnology.Referen
es1. Andrew W. Appel. Foundational proof-
arrying
ode. In LICS, 2001.2. Jan Olaf Ble
h, Lars Gesellensetter, and Sabine Glesner. Formal veri�
ation ofdead
ode elimination in isabelle/hol. In Pro
eedings of the 3rd IEEE InternationalConferen
e on Software Engineering and Formal Methods, pages 200{209. IEEE,IEEE Computer So
iety Press, September 2005.

3. Bettina Buth, Karl-Heinz Buth, Martin Fr�anzle, Burghard von Karger, YassineLakhne
h, Hans Langmaa
k, and Markus M�uller-Olm. Provably
orre
t
ompilerdevelopment and implementation. In CC '92: Pro
eedings of the 4th Interna-tional Conferen
e on Compiler Constru
tion, pages 141{155, London, UK, 1992.Springer-Verlag.4. R.J. van Glabbeek. The linear time { bran
hing time spe
trum I; the semanti
s of
on
rete, sequential pro
esses. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors,Handbook of Pro
ess Algebra,
hapter 1, pages 3{99. Elsevier, 2001. Available athttp://boole.stanford.edu/pub/spe
trum1.ps.gz.5. Sabine Glesner. Using program
he
king to ensure the
orre
tness of
ompilerimplementations. Journal of Universal Computer S
ien
e (J.UCS), 9(3):191{222,Mar
h 2003.6. Gerhard Goos and Wolf Zimmermann. Veri�
ation of
ompilers. In BernhardSte�en and Ernst R�udiger Olderog, editors, Corre
t System Design, volume 1710,pages 201{230. Springer-Verlag, November 1999.7. Gerwin Klein and Tobias Nipkow. A ma
hine-
he
ked model for a Java-like lan-guage, virtual ma
hine and
ompiler. ACM Transa
tions on Programming Lan-guages and Systems, 28(4):619{695, 2006.8. Sorin Lerner, Todd Millstein, Erika Ri
e, and Craig Chambers. Automated sound-ness proofs for data
ow analyses and transformations via lo
al rules. In POPL'05: Pro
eedings of the 32nd ACM SIGPLAN-SIGACT symposium on Prin
iplesof programming languages, pages 364{377, New York, NY, USA, 2005. ACM Press.9. Xavier Leroy. Formal
erti�
ation of a
ompiler ba
k-end or: programming a
om-piler with a proof assistant. In POPL '06: Conferen
e re
ord of the 33rd ACMSIGPLAN-SIGACT symposium on Prin
iples of programming languages, pages42{54, New York, NY, USA, 2006. ACM Press.10. G. C. Ne
ula and P. Lee. The design and implementation of a
ertifying
ompiler.In Pro
eedings of the 1998 ACM SIGPLAN Conferen
e on Programming LanguageDesign and Implementation (PLDI), pages 333{344, 1998.11. George C. Ne
ula. Proof-
arrying
ode. ACM Symposium on Prin
iples of Pro-gramming Languages and Systems, Paris, Fran
e, January 1997.12. George C. Ne
ula. Compiling with Proofs. PhD thesis, 1998.13. George C. Ne
ula. Translation validation for an optimizing
ompiler. In Pro
eed-ings of the ACM SIGPLAN Conferen
e on Programming Language Design andImplementation (PLDI), pages 83{95, 2000.14. Tobias Nipkow, Lawren
e C. Paulson, and Markus Wenzel. Isabelle/HOL | AProof Assistant for Higher-Order Logi
, volume 2283 of Le
ture Notes in ComputerS
ien
e. Springer-Verlag, 2002.15. David A. Patterson and John L. Hennessy. Computer organization and design(2nd ed.): the hardware/software interfa
e. Morgan Kaufmann Publishers In
.,San Fran
is
o, CA, USA, 1998.16. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. Le
ture Notes inComputer S
ien
e, 1384:151+, 1998.17. Arnd Poetzs
h-He�ter and Marek J. Gawkowski. Towards proof generating
om-pilers. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 132(1):37{51, 2005.18. M. Rinard and D. Marinov. Credible
ompilation with pointers. In Pro
eedings ofthe FLoC Workshop on Run-Time Result Veri�
ation, Trento, Italy, July 1999.19. Martin Rinard. Credible
ompilation. Te
hni
al Report MIT-LCS-TR-776, MITLaboratory for Computer S
ien
e, Mar
h 1999.

20. L. Zu
k, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A translation validatorfor optimizing
ompilers. In COCV'02, Compiler Optimization Meets CompilerVeri�
ation (Satellite Event of ETAPS 2002), volume 65 of Ele
troni
 Notes inTheoreti
al Computer S
ien
e, pages 1{17, April 2002.Appendix: Program De
ompositionA de
omposition for a program PL of language L with labels BL is formalized as afun
tion dL : BL ! nat su
h that dL(l) > 0 i� l is the start node of a path. In that
ase dL(l) is the length of the paths starting at l. Otherwise, dL(l) is zero, indi
atingthat dL is not de�ned for l. Let start(dL) =def fl j dL(l) > 0g be the set of startinglabels of paths, end(dL) =def fl j 9� : dL(�(0)) 2 start(dL) ^ l = �(j�j)g be the setof end labels of paths, and between(dL) =def fl j 9�; j : dL(�(0)) 2 start(dL) ^ 0 <j < j�j ^ l = �(j)g be the set of labels between start and end. We say that dL iswellformed for PL, if the program entry label l0 2 start(dL), the program exit labelle 2 end(dL), ea
h path ending in l di�erent from le has a su

essor path starting in l,i.e., end(dL) n fleg = start(dL) n fl0g, and nodes between start and end label are notend labels of other paths, i.e., between(dL) \ (end(dL) [fl0g = ;.

