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Abstract. A translation contract is a binary predicate corrTransl(S, T')
for source programs S and target programs T'. It precisely specifies when
T is counsidered to be a correct translation of S. A certifying compiler
generates —in addittion to the target T— a proof for corrTransl(S, T).
Certifying compilers are important for the development of safety criti-
cal systems to establish the behavioral equivalence of high-level programs
with their compiled assembler code. In this paper, we report on a certify-
ing compiler, its proof techniques, and the underlying formal framework
developed within the proof assistent Isabelle/HOL. The compiler uses a
tiny C-like language as input, has an optimization phase, and generates
MIPS code. The underlying translation contract is based on a trace se-
mantics. We investigate design alternatives and discuss our experiences.



1 Introduction

The compiler is a crucial part in the development of software systems. Most
software systems are described in high-level model or programming languages.
Their runtime behavior, however, is controled by the compiled code. For uncrit-
ical software it might be sufficient to just test the runtime behavior of the code.
If an error is detected, it might be caused by the programmer, by the compiler,
or by a semantical ambiguity!. For critical software, it is of great importance
that static analyses and formal methods can be applied on the source code level,
because this level is more abstract and better suited for such techniques. How-
ever, the analysis results can only be carried over to the machine code level, if
we can establish the correctness of the translation. Thus, translation correctness
is essential to close the formalization chain from high-level formal methods to
the machine-code level.

Since more than thirty years researchers have worked on the problem of trans-
lation correctness (see Sect. 2 for a review of related work). We can distinguish
two general approaches to establish the correctness of a translation?:

— Certified compiler: Prove (a) that the algorithms of the compiler define a
correct, translation for all given well-formed input programs (compiler algo-
rithm correctness) and (b) that the algorithms are correctly implemented on
a given machine (compiler implementation correctness). We call a compiler
for which machine checked proofs for both parts are developed a certified
compiler (algorithm/implementation).

— Certifying compiler: Provide a proof that a target program is a correct trans-
lation of a source program whenever such a translation is performed. It is
important to notice that these proofs do not make a statement about an
algorithm or its implementation, but only about the relation of two pro-
grams. Different techniques have been developed to automatically generate
such proofs (see Sect. 2). If the compiler generates — in addition to the
target program 7' a machine-checkable proof that 7' correctly implements
its source program, we call it a certifying compiler and the generated proof
a translation certificate.

Compared to compiler certification, the technique of compilers certifying their
results has two advantages. First, the issue of implementation correctness can be
completely avoided, that is, we do not have to trust the implementation of the
compiler algorithms on a hardware system or prove it correct (cf. [17] on this
problem). Second, similar to the proof carrying code approach ([12,11,1]), the
technique provide a clear interface between compiler producer and user. In the
certified compiler approach, compiler users need access to the compiler correct-
ness proof to assure themselves of the correctness. Thus, the compiler producer

! E.g. the programmer might assume a particular evaluation order of expressions that
is not realized by the used compiler.

? We follow the notions given in [9] and slightly refine them based on a discussion at
the Dagstuhl Seminar 05311 “Verifying Optimizing Compilers”.



has to reveal the internal details of the compiler whereas the translation certifi-
cates can be independent of compiler implementation details. The disadvantages
of the certifying compiler approach is that users have to check the certificates for
each (critical) compilation and this check might fail if the compiler has a bug.

In the last two years, we constructed an optimizing certifying compiler that
generates proof scripts as certificates. More precisely, our approach is character-
ized by the following three aspects (cf. [17]):

1. Machine-checkability and independence of logic: All specifications and proofs
are machine-checkable based on a formal general logic, that is, a logic that
is independent of languages and techniques used in the translation. We use
Isabelle/HOL as our specification and verification framework.

2. Translation contract: We require an explicit translation contract formally
specifying the semantics of source and target language and the translation
correctness predicate corrTransl(S, T') expressing the fact that T is a correct
translation of S.

3. Certifying compiler: We are interested in a technique where the compiler
generates proof scripts as checkable certificates.

Machine-checkability is advisable because of the complexity and size of the proof
tasks. Using a logical framework that is not specifically developed for the trans-
lation task and used in many other areas, increases the confidence in the frame-
work. Of course, as argued in [17], a framework in which only a very small core
has to be trusted is desirable. An explicit translation contract plays the role
of the specification of the proof task. It is the contract between producer and
client of the compiler and should thus be available to and comprehensible for
the client. In particular, it can and should be independent of the structure and
algorithms of the compilers satisfying the contract.

We developed our certifying compiler to gain experience with the described
approach and to create a testbed for the validation of different techniques to
generate machine-checkable certificates. The techniques can differ in the needed
efforts to instrument the compiler for certificate generation, in the structure
and size of the certificate, and the efficiency of checking certificates. The main
technical contributions of this paper are:

— Techniques for structuring the certification into program dependent and in-
dependent parts.

— The application of the approach to trace-based translation contracts.

— A refined technique to automate contract verification.

Methods to combine proof techniques to construct certifying compilers.

First experimental results, experiences, and technical propositions on how
to run proofs more efficiently. (To the best of our knowledge, we are the first
who implemented this approach and gained practical experience withit.)

As in this section, S denotes a source program and 7 a target program
throughout this paper.



Overview. After the discussion of related work in Sect. 2, we explain translation
contracts and specify the contract for our compiler (Sect. 3). Sect. 4 presents our
proof techniques and describes how certificates are generated. Sect. 5 shows how
other proof techniques could be integrated into our approach. Sect. 6 describes
our experimental results and techniques to make certificate checking more effi-
cient. Sect. 7 contains the conclusions.

2 Related Work

Rinard et al. present in [18,19] the credible compilation approach for certifying
compilers. In particular, they provide dedicated proof rules to verify program
invariants, even for programs with pointers. Our work builds on their approach
and extends it by the notion of an explicit translation contract. Other distinctions
are that we looked at a semantics based on output streams and that central part
of our contribution is the implementation of the approach based on a general
higher-order proof assistant.

Proof carrying code [12] is a framework for guaranteeing that certain re-
quirements or properties of a compiled program are met, e.g. type safety or the
abscence of stack overflows. That is, the carried proof certifies a property only
depending on T whereas we are interested in a property depending on S and T.
In [10], Necula and Lee described a certifying compiler for their approach guar-
anteeing that target programs are type and memory safe. What is related to
our work, is the clear separation between the compilation infrastructure and the
checkable ceritificate. That is why many techniques developed for proof carrying
code apply as well to our approach (e.g. [1]).

A large body of research has been done on certified compilers. Here, we can
only give an overview of the different areas of work. In [9], the algorithms for a
sophiticated multi-phase compiler back end are proved correct within the Coq
theorem prover. In order to achieve a trusted implementation of the algorithm, it
is exported directly from the theorem prover to program code. A similar approach
based on Isabelle/HOL is presented in [7]. The verification of an optimization
algorithm is described in [2]; it uses a simulation proof for showing semantical
equivalence. In an important step in the direction of automating the generation of
correct program translation procedures is explained in [8]. There, a specification
language is described for writing program transformations and their soundness
properties. The properties are verified by an automatic theorem prover.

In the translation validation approach [16,20] the compiler is regarded as a
black box with atmost minor instrumentation. For each run, source and target
program are passed to a separate checking unit comprising an analyzer generat-
ing proofs. These proofs are checked with a proof checker. If the proof checker
says OK, both programs are regarded as semantically equivalent. A translation
validation approach and implementation for the GNU C compiler is described
in [13]. The paper [5] examplifies that a compiler certificate checker implemen-
tation may be much easier to verify than a concrete compiler algorithm (and
its implementation). The Verifix project [6,3] had the goal to achieve correct
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compilation, too. Techniques and formalisms for compiler result checkers, de-
composition of compilers, and notions of semantical equivalence of source and
target program were developed.

3 Translation Contract and Checking Infrastructure

In this section, we describe translation contracts, the checking infrastructure, and
explain how it is realized for our compiler. Figure 1 gives an overview of the cer-
tifying compiler infrastructure for our approach. Specification and verification is
done in a general proof assistant for higher-order logic. We use Isabelle/HOL [14]
for this purpose. The specifications are divided into the compiler-independent
translation contract (shown on the left of Fig. 1) and definitions and proper-
ties that are compiler-specific, but program independent (shown on the right of
Fig. 1). Typically, the compiler-specific part contains definitions and properties
of program analyses and intermediate languages. Given S, the certifying com-
piler generates T' and a proof script as certificate. Running this proof script by
the proof checker establishes the correctness of corrTransl(S, T). In our current
setting, source and target programs are given as abstract syntax trees. Pars-
ing of concrete syntax is not considered so far. The proof must include proofs
for all compiler-specific properties that are used, that is, it builds only on the
translation contract. In the following, we describe the translation contract for
our compiler. The compiler-specific definitions and properties are presented in
Sect. 4.

Our compiler reads programs written in a small C subset, translates them
into a control flow graph (FGL), performs constant folding (CF), dead assign-
ment elimination (DAE) and loop invariant hoisting (LIH) on the flow graph,
and finally generates MIPS code (CG) (see [15]). The current implementation
of project only covers optimization and code generation. We considered these



Program P,S,T:= ([vd,...,vd],[ins,...,ins])

declare VarDecl vd = (id, 7, v)
int af4] = {2,-5,47,—4}; Instruction ins =1:1lval := e | L:print e |
int 1 = 05 I:branch el | l:gotol | 1: exit
begin Ezpression e = 0| 01 bop o0z | unop o
11 : print i; LValue lval = id | id[n] | id[id]
12 : print a[i]; Operand o =1 | id | id[n] | id[id]
13 i :=1i4+1; Value v =1 | arrv
14 : if (i<5) 11; Array arrv = (1, [iy...,14])
15 : exit; Type T = int | int[n]
end bop € {+,—, %A, V,=,#,<.<}, unop € {—, -}

id € Identifier, | € Label, i € integer, n € nat

Fig. 2. Example and syntax of language FGL

phases first, because they are more challenging from a verification point of view.
Consequently, the translation contract specifies the flow graph language FGL, the
used MIPS subset MSub and the translation correctness predicate corrTransi.

Source Language. Our source language is the flow graph language FGL support-
ing variables of primitive types, arrays, simple assignments, a print statement
to output an integer, conditional and unconditional braches, and an exit state-
ment. Figure 2 presents a simple program example and the definition of the
abstract syntax®. As we are interested in the compilation of both terminat-
ing and nonterminating programs?, we use a semantics based on sequences of
outputs produced by the print instructions. (Similarly, we could handle reads.)
More precisely, the semantics of a program is denoted by a pair (s, 0): s captures
the termination Status: Token NORMAL indicates normal termination, ABRUPT
abrupt termination, NONTERM nontermination. The second component o is a
possibly infinite sequence of integers. Infinite sequences are modeled as functions
o: nat — integer U {undef} where o is either defined for all elements of nat
or for all k € [0...n], n € nat. We call nat or [0...n] the domain of o0, denoted
by dom(o). The k-th output of the program is o(k). The type of the output
functions is named Qutput.

The interesting parts of the operational semantics of FGL are given in Fig. 3.
The main technical difficulty is to handle nontermination and infinite output.
We use the number of execution steps to inductively define the semantics as
follows. A program configuration consists of the label of the current instruction,
the state of the variables, the status of the execution, and the output produced so
far. Each component of the configuration has its corresponding selector function.

If the current termination status is NORMAL or ABRUPT, steppqr does not
change the configuration; otherwise it executes the instruction at the given la-
bel and yields the resulting configuration. As it is standard, we dispense with

% To keep the presentation short, we slightly simplified our language for this paper.
* Nonterminating programs occur for example in controler software.



Status = {NORMAL, ABRUPT, NONTERM}
Configuration = Label X State X Status x Output
steprar : Program x Configuration — Configuration

nsteprar : nat X Program x Configuration — Configuration
nsteprar(0, P, C) =C
nsteprar(n + 1, P,C) = nsteprar(n, steprar(P, C))

runpar : nat X Program — (Status x Output)
runpar(n, P) = if —wellFormed(P) then (ABRUPT, A n. undef) else
let(l, 0, s,0) = nsteprar(n, P, (lo, initrgr(P), NONTERM, A n. undef)) in (s, 0)

sempgr : Program — (Status x Output)
sempqr(P) = if In. runrgr(n, P) == (NORMAL, 0) then (NORMAL, 0)
elseif In.runprer(n, P) == (ABRUPT,0) then (ABRUPT,0)
else (NONTERM, Xk.if 3n.k € dom(output(runrar(n, P)))
then choose n. k € dom(output(runrar(n, P)))
in output(runrar(n, P))(k)
else undef)

Fig. 3. Semantics of language FGL

the formal definition of steprqgr. Function nsteprgr performs n steps. Function
runpg, checks whether a program P is well-formed, runs P for n steps with ini-
tial state initpgy, (P) that is extracted from the variable declaration, and selects
the result from the final configuration. The semantic function sempg, expresses
the overall behavior of a program P. If P terminates after n steps, sempg yields
the corresponding result. Otherwise, the k-th output is obtained by looking for a
number n of program steps that produce at least k outputs. If such an n exists,
let the program run n steps and take the k-th outputs. Otherwise the output
function remains undefined for k.

Target Language. As target language, we use MSub, a subset of the MIPS as-
sembler [15]. An MSub program is a list of MIPS instructions. In particular,
we support the following instructions: integer addition, subtraction, multipli-
cation, the compare operation “set less than”, conditional and unconditional
branches, store and load instructions, system call instructions for output and
return. Abrupt termination is indicated by setting a dedicated flag and calling
return. The formalization is very similar to that of FGL. The main difference
is that MSub uses registers and addressable memory as storage. The functions
steparsub, NStePrISub, TunpSup, and sempssyp are almost defined as in Fig. 2.

Translation Correctness Predicate. The correctness predicate corrTransl(S, T')
defines when T is considered to be a correct translation of S. It should be
independent of the developed compiler. For our compiler and in comparable
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Fig. 4. Runtime behavior of programs S and T'p

scenarios, one can simply use the equality of the semantics of source and target
language to define corrTransl:

corrTransl(S,T) =ae; ( sempar(S) = semuysup(T) )

For full-blown programming languages, the correctness predicate can become
more complex. One reason is nondeterminism in the source language, for ex-
ample caused by concurrency constructs. Another reason is the use of bounded
ressources. For example, the source language semantics might not capture pro-
gram abortion due to lack of memory. Then, a translation of source S might be
considered correct, if the target obey S’s semantics as long as there is enough
memory and aborts otherwise.

4 Proof Technique for Certifying Translations

This section explains the simulation-based proof technique that we use in our
certifying compiler. It describes how the proofs are structured into program-
independent and program-dependent parts and how the generated program-
dependent parts look like.

As it is the case for most compilers, we assume that translations are divided
into a number of phases, each phase having a source and target language. For
example, our compiler consists of five phases, one that translates the C subset
into the intermediate language FGL, three optimization phases with FGL as
source and target language, and finally the code generation producing MSub
code. We show for each® phase the semantic equality sems(S) = sem(T). The
proof of our correctness predicate follows by transitivity of equality.

#iitii Bimulatien Preof;foy g Sitigle Phase

Semantic equality of a single phase is shown by a simulation-based technique (for
the background e.g. [4]). Figure 4 illustrates the underlying proof idea. It shows

5 As said above, the proof generation for the first phase is not yet implemented.



the execution traces of a source program and a target program consisting of labels
lj and kj resp. and states m; and m/. The outputs i; and i; are given above and
below the traces. The simulation proof is based on a static decomposition of the
flow graphs of S and T into paths of finite length. Each finite path is regarded
as an atomic step in our simulation proof.

The definitions of the flow graphs for FGL and MSub are straightforward.
We assume that nodes are identified by their labels, and that the successor
relation is denoted by succ. A path m of length |7| is a non-empty list of la-
bels 7(0),...,n(Jw]) such that suce(wj,mj41). For constant folding (CF), dead
assignment elimination (DAE), and codegeneration (CG), we only need a de-
composition technique with non-overlapping paths where all paths starting in
the same node have the same length. For CF the length of all paths in source
and target is one. For DAE the paths in the source may be longer than one, con-
taining one live assignment and several dead assignments; in the target paths
have the length one. For CG the length of all paths in the source is one and in
the target one or larger. For optimizations modifying the program structure, like
our loop invariant hoisting (LIH), we developed a decomposition technique with
overlapping paths. For brevity, we only consider a simpler decomposition here.
The simulation-based proof technique is the same for both cases.

A decomposition for a program Py, of language L with labels By, is formalized
as a function dy, : B, — nat such that dp,(l) > 0 iff [ is the start node of a path.
In that case dr(l) is the length of the paths starting at 1. Otherwise, dr(I) is
zero, indicating that dy is not defined for [. The details of dj, and definition of
well-formedness are given in the appendix.

The informal idea underlying the simulation proof is that whenever we start
source program S and target T in configurations satisfying the simulation invari-
ant R (see Fig. 4) and then iteratively follow a path in S and the corresponding
path in 7', we reach configurations that satisfy R. In the following, we describe
those aspects of the proof technique in more detail that we need to explain which
parts of the proofs are program-independent and which parts are generated. For
any program P with initial configuration c¢f’, a wellformed decomposition dp
defines a sequence of configurations ¢} by ¢/ | =qcs nstep(dp(label(cl)), P,cl)
and a sequence of partial outputs of such that output(cl’) concatenated with
of equals 05-1: that is, of is the output generated by executing the instructions
of a path starting at label(c!).

For any source and target programs S and 7" and wellformed decompositions
ds and dy, a binary relation R[S,ds,T,dr] over the configurations of S and T'
is called a simulation invariant iff

R[S,ds,T,dr](c5,cd) A
Vi € nat. R[S,ds,T,dr](c?,c!) =
R[S,ds, T, dr)(c5i1,cH1) A status(cip,) = status(cio,) A of = of

The correctness proofs of all phases are based on the following program-indepen-
dent main lemma that is proved once and used in all program dependent proofs:



Lemma 1. (bisimulation lemma) For any S and T with wellformed decompo-
sitions ds and dr, if there exists a simulation invariant R[S,ds,T,dr], then S
and T are semantically equivalent, that is, semgsr(S) = sempr(T)

The task of a certifying compiler is to come up with appropriate decom-
positions ds and dr, a relation R[S, ds,T,dr] over configurations, and a proof
that R[S,ds,T,dr] is a simulation invariant. The invariant typically consists of
program-independent and program-dependent parts. The program-independent
parts capture the behavior underlying the optimization or translation phase.
Program-dependent are the label relation CLABS expressing the correspondence
between the labels of source and target and further information relevant for the
particular phase. We demonstrate this in the following subsection.

4.2 Phase-specific Simulation Relations

In this subsection, we explain the simulation relations for constant folding and
code generation.

Simulation Relation for CF. As constant folding only modifies the instructions
of the source program, but not the flow graph structure, we can use the trivial
decomposition where all paths have length one and CLABS is the equality on
labels. This is illustrated on the left-hand side of Fig. 5. Thus, the only program-
dependent part of the simulation relation Rcp is the result of the Constant
Folding Analysis. The analysis result g : B(S) — (Identifier — integer)
maps the label set B(S) of the source program S to partial functions capturing
for a subset of the variables in the program a constant value. For example, ag(1)

f?zi%@ﬂr?ﬁlfﬂ‘ii@lin‘faf‘}ﬁlalc‘?gﬂb,hﬁcaﬁelﬁ%‘fﬁiigé B?,:be constant at [ their values.

RCF [S’ dS7T’ dT](aS)((l7 m7 87 O)’ (ll7 ml7 SI7 Ol)) :def let inv = aS(l) in
I=I'Am=m'As=5 No=0 AVid € dom(inv).inv(id) = m(id)

Simulation Relation for CG. The simulation relation Rcg for the code gener-
ation depends on the relation CLABS of labels in source and target and on
the allocation of variables to registers and memory cells. As illustrated in Fig. 5,
CLABS maps FGL labels to labels of MSub instructions such that paths in FGL
have length one and paths in MSub are usually larger than one. Allocation is de-
scribed as a mapping u from the identifiers I'denti f[S] of program S to adresses.
An address is a register number or a memory address. The predicate isArr[S](id)
indicates whether id denotes an array in S. In that case, indices[S](id) denotes
the set of allowed indices.

Reg|S,ds, T,dr](CLABS, u)((I,m, s,0), (I', (regs,mem), s',0'))) =aes
(1,LI'Ye CLABS AN s=5s AN o=0d A
Vid € Identif[S]).
( —isArr[S)(id) A p(id) € dom(regs) A m(id) = regs(p(id)) )
V ( —isArr[S](id) A p(id) € dom(mem) A m(id) = mem(u(id)) )
V (isArr[S](id) A Vn € indices[S](id).
(u(id) + 4 % n) € dom(mem) A m(id,n) = mem(u(id) +4 xn) )
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Fig. 5. Corresponding label relation for CF and CG

4.3 Proof Generation

This subsection describes the proof parts generated by the compiler for a given
phase and program. (The proof for a multi-phase translation is obtained by
using the transitivity of equality; see above.) As illustrated for Rop and R,
the simulation relations are parameterized by source and target programs, by
the flow graph decompositions, and by some phase-specific information like for
example a and u. Based on the knowledge on S and T, the compiler generates
the following specifications for the proof assistant:

1. Definions for programs, the flow graph decompositions, the relation CLABS,
and the phase-specific information psinfo.

2. A proof script showing that the decompositions dg and dp are well-formed.

3. Proof scripts showing phase-specific properties (e.g. the injectivity of the
allocation mapping u).

4. A proof script showing that R[S, ds, T, d7](psinfo)(cs,cl) holds for the ini-
tial configurations.

5. For each pair of labels (1,1') € CLABS a lemma of the form given in Fig. 6.
These lemmas are called simulation-block lemmas.

6. Proof scripts for the simulation-block lemmas.

7. A proof script showing that the simulation-block lemmas imply that
R[S,ds, T, dr](psinfo) is a simulation invariant and that applies the bisim-
ulation lemma to obtain the correctness of the considered phase.

The simulation-block lemmas in their concrete form, that is, with all program-
dependent parameters instantiated express that running one or a small num-
ber of instructions on the source side has the same effect as running a certain
number of instructions on the target side. For given S and T, there is a fi-
nite number of simulation-block lemmas and each lemma covers the execution



VYm,s,o,m',s' 0.
R[S, ds, T, dr](psinfo)((1,m, s, o), (1, m' s o))
.
let ¢ = nstepsr(ds(1),S,(1,m,s,0))
and ¢ = nsteprL(dr(1'),T,(1',m',s',0"))
in R[S,ds,T,dr](psinfo)(c,c') A status(c) = status(c') A output(c) = output(c’)

Fig. 6. Lemma for simulation blocks starting at 1 and 1’

of corresponding paths of S and T'. As the paths cover the flow graph of S, a
proof by case distinction allows us to derive from the simulation-block lemmas
that R[S,ds,T,dr](psinfo) is a simulation invariant and that the bisimulation
lemma yields the overall proof goal. Except for this case distinction, most proofs
are essentially rewriting proofs enfolding the semantics definitions for the in-
structions.

5 Using Other Techniques for Certifying Compilers

The central idea of the certifying compiler approach is that the client of the
compiler obtains a checkable certificate for the correctness of a translation. The
verification technique presented in the last section is only one way to generate the
certificates. Here, we shortly describe and discuss how techniques for algorithm
verification and translation validation can be used for our goals.

Algorithm Verification. Following a technique sketched in [9], Sect. 2, correctness
proofs for all or some of the algorithms in a compiler can be used to obtain
translation certificates. Let us assume that the compilation algorithm is specified
as a computable function comp in the higher-order logic and that we have a
correctness proof for it, i.e. a proof for:

VS.S € SL : corrTransl(S, comp(S))

If an implementation icomp of the compiler produces a target 1" for a source
program S, we can construct a certificate for corrTransl(S,T) by verifying
comp(S) = T using rewriting techniques and then instantiating the above gen-
eral correctness proof. The advantage of this approach over compiler certification
is that a proof of the implementation of icomp is correct can be by passed. The
advantage over our approach is that the compiler implementation needs no in-
strumentation. Similar to our approach, the construction of the certificate can
fail, namely if comp(S) = T cannot be established. The disadvantages compared
to our approach are the following:

1. The certificates become huge because they includes the correctness proof for
the translation of all programs. Leroy suggests in [9] to mitigate this problem
by developing techniques of specializing proofs.



2. Checking comp(S) = T might be slower than checking dedicated certificates.
3. To our experience, the proof of algorithm correctness is more complex than
to proof the correctness of the translation result.

Translation Validation. As said above, one disadvantage of our approach is the
instrumentation of the compiler, because instrumentation causes development
effort and increases the complexity of the compiler. By using techniques from
translation validation, the last problem could be almost avoided. The idea is to
reduce instrumentation to a minimum and let the compiler only generate some
“hints”, for example, on the allocation of variables to memory cells. Techniques
from translation validation (see in particular [16]) could then be used to construct
a complete proof script from these hints. Even more in the line of translation
validation is a technique that avoids explicit proof scripts. Based on the strategy
mechanisms of the underlying proof assistant, one could develop proof tactics
that take the hints as input and directly construct a proof from them, that is,
one would implement translation validation using the mechanisms of the proof
assistant. This technique allows to use algorithm-independent proof techniques
of Sect. 4 with a minimum of program-dependent information. We applied this
technique to an optimization phase. Our first experiences are very encouraging.

6 Evaluation and Performance Issues

This section briefly discusses performance issues concerning the proof checking.
The generated proof scripts are run by Isabelle/HOL and it is checked whether
they correctly construct a proof. In the current implementation of Isabelle/HOL,
checking/construction of proofs that our approach generates is rather slow.® So
far, we identified the following reasons for this behaviour:

— Many steps in our proofs are of a computational nature. Executing these
steps in a theorem proving environment is very slow because most of these
steps are done by term rewriting on the data structure underlying HOL
formulas that is overly general and complex for our tasks.

— In our proof scripts, several steps still use tactics of the theorem prover that
do some search.

— Finding an optimal order for the application of tactics is challenging, par-
tially because the efficiency properties of the proof assistant are difficult to
analyse.

Concerning the first item, we plan to compare with other provers. The problem
stated as second item may be solved by using lower level tactics or special user
defined tactics. In the following part, we give a simple example of how to improve
the problem mentioned in the third item: Improving efficiency by restructuring
the underlying proof techniques.

The time consuming part of a typical code generation correctness proof is a
case distinction on labels in FGL/MSub as described in Sect. 4: For each pair

6 According to our experience this is as well true for comparable proof assistants.



of corresponding labels in an FGL- and MSub-program, we have to prove the
simulation-block lemma. As a straightforward approach to prove a single step
of the programs correct, one could execute the programs symbolically. Although
such proofs always succeed in theory, they are forbiddingly slow to handle real-
istic programs. The problem is that the approach needs a case distinction on all
variables involved in the program. And, every array element counts as a single
variable in this distinction. Each variable had to have a value equal to the cor-
responding memory location. Thus, in each step for every variable occuring in
the FGL program the corresponding memory location in the MSub program had
to be looked up. This correspondance relation between variables and memory is
stored in a list. Using Isabelle tactics each look up took O(v) time with v being
the number of variables. Hence, the time to process the proof for steps of the
program was in O(l x v?) with [ being the length of the program.

In our current approach, we make use of the fact that each step can be
proved correct without looking at other variables not occuring in the step if
the allocation mapping u is injective. Hence a variable’s corresponding memory
location is not altered if some others variable’s memory location is changed.
With the help of this we can dismiss of the last case distinction when proving
the injectivity of the mapping between variables and memory upfront. The proof
of the steps can be conducted in O(l x v). The proof of injectivity can be done
in time O(v) for non-pathological cases. Hence the complete proof can be done
in roughly O(I x v) time.

7 Conclusion

Formal translation contracts are the requirements specification for the develop-
ment of certified or certifying compilers. We used a contract that specifies se-
mantical equivalence on the basis of output traces of the considered source and
target language. This avoids to define a relation between final program state and
final memory state, and it supports nonterminating programs. We implemented
a simple certifying compiler with optimization and code generation phases that
produces machine-checkable proof scripts. Whereas current specification and ver-
ification technology is sufficient to express the translation contract, additional
properties, and proofs in a fairly convenient way, the proof checking technology
could be improved: It is mainly targeted at complex interactive proofs and not
suitable to check simple, but large proofs. Future work includes the extension of
our compiler, as well as the application of the checking approach to other areas
of software technology.
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Appendix: Program Decomposition

A decomposition for a program Py, of language L with labels By, is formalized as a
function dy, : Br, — nat such that d. (1) > 0 iff [ is the start node of a path. In that
case dr (1) is the length of the paths starting at [. Otherwise, dz (1) is zero, indicating
that dr is not defined for I. Let start(dr) =acs {I | d(l) > 0} be the set of starting
labels of paths, end(dr) =gey {l | 37 : dr(7(0)) € start(dr) ANl = w(|x|)} be the set
of end labels of paths, and between(dr) =aer {l | 37, j : do(w(0)) € start(de) A0 <
Jj < |m| Al = w(j)} be the set of labels between start and end. We say that dr is
wellformed for Py, if the program entry label Iy € start(d.), the program exit label
l. € end(dr), each path ending in [ different from [. has a successor path starting in I,
e, end(dr) \ {le} = start(dr) \ {lo}, and nodes between start and end label are not
end labels of other paths, i.e., between(d.) N (end(dr) U {lo} = 0.



