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Computer Siene DepartmentUniversity of Kaiserslauternfgawkowsk, bleh, poetzshg�informatik.uni-kl.deAbstrat. A translation ontrat is a binary prediate orrTransl(S ;T )for soure programs S and target programs T . It preisely spei�es whenT is onsidered to be a orret translation of S. A ertifying ompilergenerates {in addittion to the target T{ a proof for orrTransl(S ;T ).Certifying ompilers are important for the development of safety riti-al systems to establish the behavioral equivalene of high-level programswith their ompiled assembler ode. In this paper, we report on a ertify-ing ompiler, its proof tehniques, and the underlying formal frameworkdeveloped within the proof assistent Isabelle/HOL. The ompiler uses atiny C-like language as input, has an optimization phase, and generatesMIPS ode. The underlying translation ontrat is based on a trae se-mantis. We investigate design alternatives and disuss our experienes.



1 IntrodutionThe ompiler is a ruial part in the development of software systems. Mostsoftware systems are desribed in high-level model or programming languages.Their runtime behavior, however, is ontroled by the ompiled ode. For unrit-ial software it might be suÆient to just test the runtime behavior of the ode.If an error is deteted, it might be aused by the programmer, by the ompiler,or by a semantial ambiguity1. For ritial software, it is of great importanethat stati analyses and formal methods an be applied on the soure ode level,beause this level is more abstrat and better suited for suh tehniques. How-ever, the analysis results an only be arried over to the mahine ode level, ifwe an establish the orretness of the translation. Thus, translation orretnessis essential to lose the formalization hain from high-level formal methods tothe mahine-ode level.Sine more than thirty years researhers have worked on the problem of trans-lation orretness (see Set. 2 for a review of related work). We an distinguishtwo general approahes to establish the orretness of a translation2:{ Certi�ed ompiler : Prove (a) that the algorithms of the ompiler de�ne aorret translation for all given well-formed input programs (ompiler algo-rithm orretness) and (b) that the algorithms are orretly implemented ona given mahine (ompiler implementation orretness). We all a ompilerfor whih mahine heked proofs for both parts are developed a erti�edompiler (algorithm/implementation).{ Certifying ompiler : Provide a proof that a target program is a orret trans-lation of a soure program whenever suh a translation is performed. It isimportant to notie that these proofs do not make a statement about analgorithm or its implementation, but only about the relation of two pro-grams. Di�erent tehniques have been developed to automatially generatesuh proofs (see Set. 2). If the ompiler generates | in addition to thetarget program T | a mahine-hekable proof that T orretly implementsits soure program, we all it a ertifying ompiler and the generated proofa translation erti�ate.Compared to ompiler erti�ation, the tehnique of ompilers ertifying theirresults has two advantages. First, the issue of implementation orretness an beompletely avoided, that is, we do not have to trust the implementation of theompiler algorithms on a hardware system or prove it orret (f. [17℄ on thisproblem). Seond, similar to the proof arrying ode approah ([12, 11, 1℄), thetehnique provide a lear interfae between ompiler produer and user. In theerti�ed ompiler approah, ompiler users need aess to the ompiler orret-ness proof to assure themselves of the orretness. Thus, the ompiler produer1 E.g. the programmer might assume a partiular evaluation order of expressions thatis not realized by the used ompiler.2 We follow the notions given in [9℄ and slightly re�ne them based on a disussion atthe Dagstuhl Seminar 05311 \Verifying Optimizing Compilers".



has to reveal the internal details of the ompiler whereas the translation erti�-ates an be independent of ompiler implementation details. The disadvantagesof the ertifying ompiler approah is that users have to hek the erti�ates foreah (ritial) ompilation and this hek might fail if the ompiler has a bug.In the last two years, we onstruted an optimizing ertifying ompiler thatgenerates proof sripts as erti�ates. More preisely, our approah is harater-ized by the following three aspets (f. [17℄):1. Mahine-hekability and independene of logi: All spei�ations and proofsare mahine-hekable based on a formal general logi, that is, a logi thatis independent of languages and tehniques used in the translation. We useIsabelle/HOL as our spei�ation and veri�ation framework.2. Translation ontrat: We require an expliit translation ontrat formallyspeifying the semantis of soure and target language and the translationorretness prediate orrTransl(S ;T ) expressing the fat that T is a orrettranslation of S.3. Certifying ompiler: We are interested in a tehnique where the ompilergenerates proof sripts as hekable erti�ates.Mahine-hekability is advisable beause of the omplexity and size of the prooftasks. Using a logial framework that is not spei�ally developed for the trans-lation task and used in many other areas, inreases the on�dene in the frame-work. Of ourse, as argued in [17℄, a framework in whih only a very small orehas to be trusted is desirable. An expliit translation ontrat plays the roleof the spei�ation of the proof task. It is the ontrat between produer andlient of the ompiler and should thus be available to and omprehensible forthe lient. In partiular, it an and should be independent of the struture andalgorithms of the ompilers satisfying the ontrat.We developed our ertifying ompiler to gain experiene with the desribedapproah and to reate a testbed for the validation of di�erent tehniques togenerate mahine-hekable erti�ates. The tehniques an di�er in the needede�orts to instrument the ompiler for erti�ate generation, in the strutureand size of the erti�ate, and the eÆieny of heking erti�ates. The maintehnial ontributions of this paper are:{ Tehniques for struturing the erti�ation into program dependent and in-dependent parts.{ The appliation of the approah to trae-based translation ontrats.{ A re�ned tehnique to automate ontrat veri�ation.{ Methods to ombine proof tehniques to onstrut ertifying ompilers.{ First experimental results, experienes, and tehnial propositions on howto run proofs more eÆiently. (To the best of our knowledge, we are the �rstwho implemented this approah and gained pratial experiene withit.)As in this setion, S denotes a soure program and T a target programthroughout this paper.



Overview. After the disussion of related work in Set. 2, we explain translationontrats and speify the ontrat for our ompiler (Set. 3). Set. 4 presents ourproof tehniques and desribes how erti�ates are generated. Set. 5 shows howother proof tehniques ould be integrated into our approah. Set. 6 desribesour experimental results and tehniques to make erti�ate heking more eÆ-ient. Set. 7 ontains the onlusions.2 Related WorkRinard et al. present in [18, 19℄ the redible ompilation approah for ertifyingompilers. In partiular, they provide dediated proof rules to verify programinvariants, even for programs with pointers. Our work builds on their approahand extends it by the notion of an expliit translation ontrat. Other distintionsare that we looked at a semantis based on output streams and that entral partof our ontribution is the implementation of the approah based on a generalhigher-order proof assistant.Proof arrying ode [12℄ is a framework for guaranteeing that ertain re-quirements or properties of a ompiled program are met, e.g. type safety or theabsene of stak overows. That is, the arried proof erti�es a property onlydepending on T whereas we are interested in a property depending on S and T.In [10℄, Neula and Lee desribed a ertifying ompiler for their approah guar-anteeing that target programs are type and memory safe. What is related toour work, is the lear separation between the ompilation infrastruture and thehekable eriti�ate. That is why many tehniques developed for proof arryingode apply as well to our approah (e.g. [1℄).A large body of researh has been done on erti�ed ompilers. Here, we anonly give an overview of the di�erent areas of work. In [9℄, the algorithms for asophitiated multi-phase ompiler bak end are proved orret within the Coqtheorem prover. In order to ahieve a trusted implementation of the algorithm, itis exported diretly from the theorem prover to program ode. A similar approahbased on Isabelle/HOL is presented in [7℄. The veri�ation of an optimizationalgorithm is desribed in [2℄; it uses a simulation proof for showing semantialequivalene. In an important step in the diretion of automating the generation oforret program translation proedures is explained in [8℄. There, a spei�ationlanguage is desribed for writing program transformations and their soundnessproperties. The properties are veri�ed by an automati theorem prover.In the translation validation approah [16, 20℄ the ompiler is regarded as ablak box with atmost minor instrumentation. For eah run, soure and targetprogram are passed to a separate heking unit omprising an analyzer generat-ing proofs. These proofs are heked with a proof heker. If the proof hekersays OK, both programs are regarded as semantially equivalent. A translationvalidation approah and implementation for the GNU C ompiler is desribedin [13℄. The paper [5℄ exampli�es that a ompiler erti�ate heker implemen-tation may be muh easier to verify than a onrete ompiler algorithm (andits implementation). The Veri�x projet [6, 3℄ had the goal to ahieve orret
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Fig. 1. Certifying ompiler infrastrutureertifying ompiler infrastrutureompilation, too. Tehniques and formalisms for ompiler result hekers, de-omposition of ompilers, and notions of semantial equivalene of soure andtarget program were developed.3 Translation Contrat and Cheking InfrastrutureIn this setion, we desribe translation ontrats, the heking infrastruture, andexplain how it is realized for our ompiler. Figure 1 gives an overview of the er-tifying ompiler infrastruture for our approah. Spei�ation and veri�ation isdone in a general proof assistant for higher-order logi. We use Isabelle/HOL [14℄for this purpose. The spei�ations are divided into the ompiler-independenttranslation ontrat (shown on the left of Fig. 1) and de�nitions and proper-ties that are ompiler-spei�, but program independent (shown on the right ofFig. 1). Typially, the ompiler-spei� part ontains de�nitions and propertiesof program analyses and intermediate languages. Given S, the ertifying om-piler generates T and a proof sript as erti�ate. Running this proof sript bythe proof heker establishes the orretness of orrTransl(S ;T ). In our urrentsetting, soure and target programs are given as abstrat syntax trees. Pars-ing of onrete syntax is not onsidered so far. The proof must inlude proofsfor all ompiler-spei� properties that are used, that is, it builds only on thetranslation ontrat. In the following, we desribe the translation ontrat forour ompiler. The ompiler-spei� de�nitions and properties are presented inSet. 4.Our ompiler reads programs written in a small C subset, translates theminto a ontrol ow graph (FGL), performs onstant folding (CF), dead assign-ment elimination (DAE) and loop invariant hoisting (LIH) on the ow graph,and �nally generates MIPS ode (CG) (see [15℄). The urrent implementationof projet only overs optimization and ode generation. We onsidered these



delareint a [4℄ = f2,�5,47,�4g;int i = 0;beginl1 : print i ;l2 : print a[ i ℄;l3 : i := i+1;l4 : if ( i<5) l1;l5 : exit ;end
Program P ; S ;T := ([vd ; : : : ; vd ℄; [ins; : : : ; ins℄)VarDel vd := (id ; �; v)Instrution ins := l : lval := e j l : print e jl : branh e l j l : goto l j l : exitExpression e := o j o1 bop o2 j unop oLValue lval := id j id [n℄ j id [id ℄Operand o := i j id j id [n℄ j id [id ℄Value v := i j arrvArray arrv := (�; [i ; : : : ; i ℄)Type � := int j int [n℄bop 2 f+;�; �;^;_;=; 6=; <;�g; unop 2 f�;:gid 2 Identi�er ; l 2 Label ; i 2 integer ; n 2 natFig. 2. Example and syntax of language FGLphases �rst, beause they are more hallenging from a veri�ation point of view.Consequently, the translation ontrat spei�es the ow graph language FGL, theused MIPS subset MSub and the translation orretness prediate orrTransl .Soure Language. Our soure language is the ow graph language FGL support-ing variables of primitive types, arrays, simple assignments, a print statementto output an integer, onditional and unonditional brahes, and an exit state-ment. Figure 2 presents a simple program example and the de�nition of theabstrat syntax3. As we are interested in the ompilation of both terminat-ing and nonterminating programs4, we use a semantis based on sequenes ofoutputs produed by the print instrutions. (Similarly, we ould handle reads.)More preisely, the semantis of a program is denoted by a pair (s; o): s apturesthe termination Status: Token NORMAL indiates normal termination, ABRUPTabrupt termination, NONTERM nontermination. The seond omponent o is apossibly in�nite sequene of integers. In�nite sequenes are modeled as funtionso : nat ! integer [ fundefg where o is either de�ned for all elements of nator for all k 2 [0 : : : n℄; n 2 nat . We all nat or [0 : : : n℄ the domain of o, denotedby dom(o). The k-th output of the program is o(k). The type of the outputfuntions is named Output.The interesting parts of the operational semantis of FGL are given in Fig. 3.The main tehnial diÆulty is to handle nontermination and in�nite output.We use the number of exeution steps to indutively de�ne the semantis asfollows. A program on�guration onsists of the label of the urrent instrution,the state of the variables, the status of the exeution, and the output produed sofar. Eah omponent of the on�guration has its orresponding seletor funtion.If the urrent termination status is NORMAL or ABRUPT, stepFGL does nothange the on�guration; otherwise it exeutes the instrution at the given la-bel and yields the resulting on�guration. As it is standard, we dispense with3 To keep the presentation short, we slightly simpli�ed our language for this paper.4 Nonterminating programs our for example in ontroler software.



Status = fNORMAL;ABRUPT;NONTERMgCon�guration = Label � State � Status �OutputstepFGL : Program �Con�guration �! Con�gurationnstepFGL : nat� Program� Configuration �! ConfigurationnstepFGL(0; P; C) = CnstepFGL(n+ 1; P; C) = nstepFGL(n; stepFGL(P;C))runFGL : nat� Program �! (Status�Output)runFGL(n; P ) = if :wellFormed (P ) then (ABRUPT; � n: undef) elselet(l; �; s; o) = nstepFGL(n; P; (l0; initFGL(P );NONTERM; � n: undef)) in (s; o)semFGL : Program �! (Status �Output)semFGL(P ) = if 9n: runFGL(n; P ) == (NORMAL; o) then (NORMAL; o)elseif 9n: runFGL(n; P ) == (ABRUPT; o) then (ABRUPT; o)else (NONTERM; � k: if 9n: k 2 dom(output(runFGL(n; P )))then hoose n: k 2 dom(output(runFGL(n; P )))in output (runFGL(n; P ))(k)else undef)Fig. 3. Semantis of language FGLthe formal de�nition of stepFGL. Funtion nstepFGL performs n steps. FuntionrunFGL heks whether a program P is well-formed, runs P for n steps with ini-tial state initFGL(P ) that is extrated from the variable delaration, and seletsthe result from the �nal on�guration. The semanti funtion semFGL expressesthe overall behavior of a program P . If P terminates after n steps, semFGL yieldsthe orresponding result. Otherwise, the k-th output is obtained by looking for anumber n of program steps that produe at least k outputs. If suh an n exists,let the program run n steps and take the k-th outputs. Otherwise the outputfuntion remains unde�ned for k.Target Language. As target language, we use MSub, a subset of the MIPS as-sembler [15℄. An MSub program is a list of MIPS instrutions. In partiular,we support the following instrutions: integer addition, subtration, multipli-ation, the ompare operation \set less than", onditional and unonditionalbranhes, store and load instrutions, system all instrutions for output andreturn. Abrupt termination is indiated by setting a dediated ag and allingreturn. The formalization is very similar to that of FGL. The main di�ereneis that MSub uses registers and addressable memory as storage. The funtionsstepMSub , nstepMSub , runMSub, and semMSub are almost de�ned as in Fig. 2.Translation Corretness Prediate. The orretness prediate orrTransl(S ;T )de�nes when T is onsidered to be a orret translation of S. It should beindependent of the developed ompiler. For our ompiler and in omparable
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S :
T : Fig. 4. Runtime behavior of programs S and Tpsenarios, one an simply use the equality of the semantis of soure and targetlanguage to de�ne orrTransl :orrTransl(S; T ) =def ( semFGL(S) = semMSub(T ) )For full-blown programming languages, the orretness prediate an beomemore omplex. One reason is nondeterminism in the soure language, for ex-ample aused by onurreny onstruts. Another reason is the use of boundedressoures. For example, the soure language semantis might not apture pro-gram abortion due to lak of memory. Then, a translation of soure S might beonsidered orret, if the target obey S's semantis as long as there is enoughmemory and aborts otherwise.4 Proof Tehnique for Certifying TranslationsThis setion explains the simulation-based proof tehnique that we use in ourertifying ompiler. It desribes how the proofs are strutured into program-independent and program-dependent parts and how the generated program-dependent parts look like.As it is the ase for most ompilers, we assume that translations are dividedinto a number of phases, eah phase having a soure and target language. Forexample, our ompiler onsists of �ve phases, one that translates the C subsetinto the intermediate language FGL, three optimization phases with FGL assoure and target language, and �nally the ode generation produing MSubode. We show for eah5 phase the semanti equality semS (S ) = semT (T ). Theproof of our orretness prediate follows by transitivity of equality.<<<<<<< .mine ======= >>>>>>> .r4574.1 Simulation Proof for a Single PhaseSemanti equality of a single phase is shown by a simulation-based tehnique (forthe bakground e.g. [4℄). Figure 4 illustrates the underlying proof idea. It shows5 As said above, the proof generation for the �rst phase is not yet implemented.



the exeution traes of a soure program and a target program onsisting of labelslj and kj resp. and states mj and m0j . The outputs ij and i0j are given above andbelow the traes. The simulation proof is based on a stati deomposition of theow graphs of S and T into paths of �nite length. Eah �nite path is regardedas an atomi step in our simulation proof.The de�nitions of the ow graphs for FGL and MSub are straightforward.We assume that nodes are identi�ed by their labels, and that the suessorrelation is denoted by su. A path � of length j�j is a non-empty list of la-bels �(0); : : : ; �(j�j) suh that su(�j ; �j+1). For onstant folding (CF), deadassignment elimination (DAE), and odegeneration (CG), we only need a de-omposition tehnique with non-overlapping paths where all paths starting inthe same node have the same length. For CF the length of all paths in soureand target is one. For DAE the paths in the soure may be longer than one, on-taining one live assignment and several dead assignments; in the target pathshave the length one. For CG the length of all paths in the soure is one and inthe target one or larger. For optimizations modifying the program struture, likeour loop invariant hoisting (LIH), we developed a deomposition tehnique withoverlapping paths. For brevity, we only onsider a simpler deomposition here.The simulation-based proof tehnique is the same for both ases.A deomposition for a program PL of language L with labels BL is formalizedas a funtion dL : BL ! nat suh that dL(l) > 0 i� l is the start node of a path.In that ase dL(l) is the length of the paths starting at l. Otherwise, dL(l) iszero, indiating that dL is not de�ned for l. The details of dL and de�nition ofwell-formedness are given in the appendix.The informal idea underlying the simulation proof is that whenever we startsoure program S and target T in on�gurations satisfying the simulation invari-ant R (see Fig. 4) and then iteratively follow a path in S and the orrespondingpath in T , we reah on�gurations that satisfy R. In the following, we desribethose aspets of the proof tehnique in more detail that we need to explain whihparts of the proofs are program-independent and whih parts are generated. Forany program P with initial on�guration P0 , a wellformed deomposition dPde�nes a sequene of on�gurations Pi by Pi+1 =def nstep(dP (label(Pi )); P; Pi )and a sequene of partial outputs oPi suh that output(Pi ) onatenated withoPi equals Pi+1, that is, oPi is the output generated by exeuting the instrutionsof a path starting at label(Pi ).For any soure and target programs S and T and wellformed deompositionsdS and dT , a binary relation R[S; dS ; T; dT ℄ over the on�gurations of S and Tis alled a simulation invariant i�R[S; dS; T; dT ℄(S0 ; T0 ) ^8 i 2 nat: R[S; dS ; T; dT ℄(Si ; Ti ) =)R[S; dS; T; dT ℄(Si+1; Ti+1) ^ status(Si+1) = status(Ti+1) ^ oSi = oTiThe orretness proofs of all phases are based on the following program-indepen-dent main lemma that is proved one and used in all program dependent proofs:



Lemma 1. (bisimulation lemma) For any S and T with wellformed deompo-sitions dS and dT , if there exists a simulation invariant R[S; dS ; T; dT ℄, then Sand T are semantially equivalent, that is, semSL(S) = semTL(T )The task of a ertifying ompiler is to ome up with appropriate deom-positions dS and dT , a relation R[S; dS ; T; dT ℄ over on�gurations, and a proofthat R[S; dS ; T; dT ℄ is a simulation invariant. The invariant typially onsists ofprogram-independent and program-dependent parts. The program-independentparts apture the behavior underlying the optimization or translation phase.Program-dependent are the label relation CLABS expressing the orrespondenebetween the labels of soure and target and further information relevant for thepartiular phase. We demonstrate this in the following subsetion.4.2 Phase-spei� Simulation RelationsIn this subsetion, we explain the simulation relations for onstant folding andode generation.Simulation Relation for CF. As onstant folding only modi�es the instrutionsof the soure program, but not the ow graph struture, we an use the trivialdeomposition where all paths have length one and CLABS is the equality onlabels. This is illustrated on the left-hand side of Fig. 5. Thus, the only program-dependent part of the simulation relation RCF is the result of the ConstantFolding Analysis. The analysis result �S : B(S) ! (Identifier ,! integer)maps the label set B(S) of the soure program S to partial funtions apturingfor a subset of the variables in the program a onstant value. For example, �S(l)aptures for all variables that are deteted to be onstant at l their values.Based on this information, RCF is de�ned by:RCF [S; dS ; T; dT ℄(�S)((l;m; s; o); (l0;m0; s0; o0)) =def let inv = �S(l) inl = l0 ^m = m0 ^ s = s0 ^ o = o0 ^ 8 id 2 dom(inv): inv(id) = m(id)Simulation Relation for CG. The simulation relation RCG for the ode gener-ation depends on the relation CLABS of labels in soure and target and onthe alloation of variables to registers and memory ells. As illustrated in Fig. 5,CLABS maps FGL labels to labels of MSub instrutions suh that paths in FGLhave length one and paths in MSub are usually larger than one. Alloation is de-sribed as a mapping � from the identi�ers Identif [S℄ of program S to adresses.An address is a register number or a memory address. The prediate isArr[S℄(id)indiates whether id denotes an array in S. In that ase, indies[S℄(id) denotesthe set of allowed indies.RCG[S; dS; T; dT ℄(CLABS; �)((l;m; s; o); (l0; (regs;mem); s0; o0))) =def(l; l0) 2 CLABS ^ s = s0 ^ o = o0 ^8 id 2 Identif [S℄):( :isArr[S℄(id) ^ �(id) 2 dom(regs)^m(id) = regs(�(id)) )_ ( :isArr[S℄(id) ^ �(id) 2 dom(mem)^m(id) = mem(�(id)) )_ ( isArr[S℄(id) ^ 8n 2 indies[S℄(id):(�(id) + 4 � n) 2 dom(mem) ^m(id; n) = mem(�(id) + 4 � n) )



li : x = 3;li+1 : y = y + xli+2 : if y < 25 ljS dS li : x = 3;li+1 : y = y + 3li+2 : if y < 25 ljS0 dS0 kj : ADDI $7 $0 3kj+1 : ADD $8 $8 $7kj+2 : SLTI $9 $8 25kj+3 : BGTZ $9 kj
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Fig. 5. Corresponding label relation for CF and CG4.3 Proof GenerationThis subsetion desribes the proof parts generated by the ompiler for a givenphase and program. (The proof for a multi-phase translation is obtained byusing the transitivity of equality; see above.) As illustrated for RCF and RCG,the simulation relations are parameterized by soure and target programs, bythe ow graph deompositions, and by some phase-spei� information like forexample � and �. Based on the knowledge on S and T , the ompiler generatesthe following spei�ations for the proof assistant:1. De�nions for programs, the ow graph deompositions, the relation CLABS,and the phase-spei� information psinfo .2. A proof sript showing that the deompositions dS and dT are well-formed.3. Proof sripts showing phase-spei� properties (e.g. the injetivity of thealloation mapping �).4. A proof sript showing that R[S; dS ; T; dT ℄(psinfo)(S0 ; T0 ) holds for the ini-tial on�gurations.5. For eah pair of labels (l; l0) 2 CLABS a lemma of the form given in Fig. 6.These lemmas are alled simulation-blok lemmas.6. Proof sripts for the simulation-blok lemmas.7. A proof sript showing that the simulation-blok lemmas imply thatR[S; dS ; T; dT ℄(psinfo) is a simulation invariant and that applies the bisim-ulation lemma to obtain the orretness of the onsidered phase.The simulation-blok lemmas in their onrete form, that is, with all program-dependent parameters instantiated express that running one or a small num-ber of instrutions on the soure side has the same e�et as running a ertainnumber of instrutions on the target side. For given S and T , there is a �-nite number of simulation-blok lemmas and eah lemma overs the exeution



8m;s; o;m0; s0; o0:R[S; dS; T; dT ℄(psinfo)((l; m; s; o); (l0;m0; s0; o0))=)let  = nstepSL(dS(l); S; (l;m; s; o))and 0 = nstepTL(dT (l0); T; (l0;m0; s0; o0))in R[S; dS ; T; dT ℄(psinfo)(; 0) ^ status() = status(0) ^ output() = output(0)Fig. 6. Lemma for simulation bloks starting at l and l0of orresponding paths of S and T . As the paths over the ow graph of S, aproof by ase distintion allows us to derive from the simulation-blok lemmasthat R[S; dS ; T; dT ℄(psinfo) is a simulation invariant and that the bisimulationlemma yields the overall proof goal. Exept for this ase distintion, most proofsare essentially rewriting proofs enfolding the semantis de�nitions for the in-strutions.5 Using Other Tehniques for Certifying CompilersThe entral idea of the ertifying ompiler approah is that the lient of theompiler obtains a hekable erti�ate for the orretness of a translation. Theveri�ation tehnique presented in the last setion is only one way to generate theerti�ates. Here, we shortly desribe and disuss how tehniques for algorithmveri�ation and translation validation an be used for our goals.Algorithm Veri�ation. Following a tehnique skethed in [9℄, Set. 2, orretnessproofs for all or some of the algorithms in a ompiler an be used to obtaintranslation erti�ates. Let us assume that the ompilation algorithm is spei�edas a omputable funtion omp in the higher-order logi and that we have aorretness proof for it, i.e. a proof for:8S:S 2 SL : orrTransl(S; omp(S))If an implementation iomp of the ompiler produes a target T for a soureprogram S, we an onstrut a erti�ate for orrTransl(S; T ) by verifyingomp(S) = T using rewriting tehniques and then instantiating the above gen-eral orretness proof. The advantage of this approah over ompiler erti�ationis that a proof of the implementation of iomp is orret an be by passed. Theadvantage over our approah is that the ompiler implementation needs no in-strumentation. Similar to our approah, the onstrution of the erti�ate anfail, namely if omp(S) = T annot be established. The disadvantages omparedto our approah are the following:1. The erti�ates beome huge beause they inludes the orretness proof forthe translation of all programs. Leroy suggests in [9℄ to mitigate this problemby developing tehniques of speializing proofs.



2. Cheking omp(S) = T might be slower than heking dediated erti�ates.3. To our experiene, the proof of algorithm orretness is more omplex thanto proof the orretness of the translation result.Translation Validation. As said above, one disadvantage of our approah is theinstrumentation of the ompiler, beause instrumentation auses developmente�ort and inreases the omplexity of the ompiler. By using tehniques fromtranslation validation, the last problem ould be almost avoided. The idea is toredue instrumentation to a minimum and let the ompiler only generate some\hints", for example, on the alloation of variables to memory ells. Tehniquesfrom translation validation (see in partiular [16℄) ould then be used to onstruta omplete proof sript from these hints. Even more in the line of translationvalidation is a tehnique that avoids expliit proof sripts. Based on the strategymehanisms of the underlying proof assistant, one ould develop proof tatisthat take the hints as input and diretly onstrut a proof from them, that is,one would implement translation validation using the mehanisms of the proofassistant. This tehnique allows to use algorithm-independent proof tehniquesof Set. 4 with a minimum of program-dependent information. We applied thistehnique to an optimization phase. Our �rst experienes are very enouraging.6 Evaluation and Performane IssuesThis setion briey disusses performane issues onerning the proof heking.The generated proof sripts are run by Isabelle/HOL and it is heked whetherthey orretly onstrut a proof. In the urrent implementation of Isabelle/HOL,heking/onstrution of proofs that our approah generates is rather slow.6 Sofar, we identi�ed the following reasons for this behaviour:{ Many steps in our proofs are of a omputational nature. Exeuting thesesteps in a theorem proving environment is very slow beause most of thesesteps are done by term rewriting on the data struture underlying HOLformulas that is overly general and omplex for our tasks.{ In our proof sripts, several steps still use tatis of the theorem prover thatdo some searh.{ Finding an optimal order for the appliation of tatis is hallenging, par-tially beause the eÆieny properties of the proof assistant are diÆult toanalyse.Conerning the �rst item, we plan to ompare with other provers. The problemstated as seond item may be solved by using lower level tatis or speial userde�ned tatis. In the following part, we give a simple example of how to improvethe problem mentioned in the third item: Improving eÆieny by restruturingthe underlying proof tehniques.The time onsuming part of a typial ode generation orretness proof is aase distintion on labels in FGL/MSub as desribed in Set. 4: For eah pair6 Aording to our experiene this is as well true for omparable proof assistants.



of orresponding labels in an FGL- and MSub-program, we have to prove thesimulation-blok lemma. As a straightforward approah to prove a single stepof the programs orret, one ould exeute the programs symbolially. Althoughsuh proofs always sueed in theory, they are forbiddingly slow to handle real-isti programs. The problem is that the approah needs a ase distintion on allvariables involved in the program. And, every array element ounts as a singlevariable in this distintion. Eah variable had to have a value equal to the or-responding memory loation. Thus, in eah step for every variable ouring inthe FGL program the orresponding memory loation in the MSub program hadto be looked up. This orrespondane relation between variables and memory isstored in a list. Using Isabelle tatis eah look up took O(v) time with v beingthe number of variables. Hene, the time to proess the proof for steps of theprogram was in O(l � v2) with l being the length of the program.In our urrent approah, we make use of the fat that eah step an beproved orret without looking at other variables not ouring in the step ifthe alloation mapping � is injetive. Hene a variable's orresponding memoryloation is not altered if some others variable's memory loation is hanged.With the help of this we an dismiss of the last ase distintion when provingthe injetivity of the mapping between variables and memory upfront. The proofof the steps an be onduted in O(l � v). The proof of injetivity an be donein time O(v) for non-pathologial ases. Hene the omplete proof an be donein roughly O(l � v) time.7 ConlusionFormal translation ontrats are the requirements spei�ation for the develop-ment of erti�ed or ertifying ompilers. We used a ontrat that spei�es se-mantial equivalene on the basis of output traes of the onsidered soure andtarget language. This avoids to de�ne a relation between �nal program state and�nal memory state, and it supports nonterminating programs. We implementeda simple ertifying ompiler with optimization and ode generation phases thatprodues mahine-hekable proof sripts. Whereas urrent spei�ation and ver-i�ation tehnology is suÆient to express the translation ontrat, additionalproperties, and proofs in a fairly onvenient way, the proof heking tehnologyould be improved: It is mainly targeted at omplex interative proofs and notsuitable to hek simple, but large proofs. Future work inludes the extension ofour ompiler, as well as the appliation of the heking approah to other areasof software tehnology.Referenes1. Andrew W. Appel. Foundational proof-arrying ode. In LICS, 2001.2. Jan Olaf Bleh, Lars Gesellensetter, and Sabine Glesner. Formal veri�ation ofdead ode elimination in isabelle/hol. In Proeedings of the 3rd IEEE InternationalConferene on Software Engineering and Formal Methods, pages 200{209. IEEE,IEEE Computer Soiety Press, September 2005.
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