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h, poetzs
hg�informatik.uni-kl.deAbstra
t. A translation 
ontra
t is a binary predi
ate 
orrTransl(S ;T )for sour
e programs S and target programs T . It pre
isely spe
i�es whenT is 
onsidered to be a 
orre
t translation of S. A 
ertifying 
ompilergenerates {in addittion to the target T{ a proof for 
orrTransl(S ;T ).Certifying 
ompilers are important for the development of safety 
riti-
al systems to establish the behavioral equivalen
e of high-level programswith their 
ompiled assembler 
ode. In this paper, we report on a 
ertify-ing 
ompiler, its proof te
hniques, and the underlying formal frameworkdeveloped within the proof assistent Isabelle/HOL. The 
ompiler uses atiny C-like language as input, has an optimization phase, and generatesMIPS 
ode. The underlying translation 
ontra
t is based on a tra
e se-manti
s. We investigate design alternatives and dis
uss our experien
es.



1 Introdu
tionThe 
ompiler is a 
ru
ial part in the development of software systems. Mostsoftware systems are des
ribed in high-level model or programming languages.Their runtime behavior, however, is 
ontroled by the 
ompiled 
ode. For un
rit-i
al software it might be suÆ
ient to just test the runtime behavior of the 
ode.If an error is dete
ted, it might be 
aused by the programmer, by the 
ompiler,or by a semanti
al ambiguity1. For 
riti
al software, it is of great importan
ethat stati
 analyses and formal methods 
an be applied on the sour
e 
ode level,be
ause this level is more abstra
t and better suited for su
h te
hniques. How-ever, the analysis results 
an only be 
arried over to the ma
hine 
ode level, ifwe 
an establish the 
orre
tness of the translation. Thus, translation 
orre
tnessis essential to 
lose the formalization 
hain from high-level formal methods tothe ma
hine-
ode level.Sin
e more than thirty years resear
hers have worked on the problem of trans-lation 
orre
tness (see Se
t. 2 for a review of related work). We 
an distinguishtwo general approa
hes to establish the 
orre
tness of a translation2:{ Certi�ed 
ompiler : Prove (a) that the algorithms of the 
ompiler de�ne a
orre
t translation for all given well-formed input programs (
ompiler algo-rithm 
orre
tness) and (b) that the algorithms are 
orre
tly implemented ona given ma
hine (
ompiler implementation 
orre
tness). We 
all a 
ompilerfor whi
h ma
hine 
he
ked proofs for both parts are developed a 
erti�ed
ompiler (algorithm/implementation).{ Certifying 
ompiler : Provide a proof that a target program is a 
orre
t trans-lation of a sour
e program whenever su
h a translation is performed. It isimportant to noti
e that these proofs do not make a statement about analgorithm or its implementation, but only about the relation of two pro-grams. Di�erent te
hniques have been developed to automati
ally generatesu
h proofs (see Se
t. 2). If the 
ompiler generates | in addition to thetarget program T | a ma
hine-
he
kable proof that T 
orre
tly implementsits sour
e program, we 
all it a 
ertifying 
ompiler and the generated proofa translation 
erti�
ate.Compared to 
ompiler 
erti�
ation, the te
hnique of 
ompilers 
ertifying theirresults has two advantages. First, the issue of implementation 
orre
tness 
an be
ompletely avoided, that is, we do not have to trust the implementation of the
ompiler algorithms on a hardware system or prove it 
orre
t (
f. [17℄ on thisproblem). Se
ond, similar to the proof 
arrying 
ode approa
h ([12, 11, 1℄), thete
hnique provide a 
lear interfa
e between 
ompiler produ
er and user. In the
erti�ed 
ompiler approa
h, 
ompiler users need a

ess to the 
ompiler 
orre
t-ness proof to assure themselves of the 
orre
tness. Thus, the 
ompiler produ
er1 E.g. the programmer might assume a parti
ular evaluation order of expressions thatis not realized by the used 
ompiler.2 We follow the notions given in [9℄ and slightly re�ne them based on a dis
ussion atthe Dagstuhl Seminar 05311 \Verifying Optimizing Compilers".



has to reveal the internal details of the 
ompiler whereas the translation 
erti�-
ates 
an be independent of 
ompiler implementation details. The disadvantagesof the 
ertifying 
ompiler approa
h is that users have to 
he
k the 
erti�
ates forea
h (
riti
al) 
ompilation and this 
he
k might fail if the 
ompiler has a bug.In the last two years, we 
onstru
ted an optimizing 
ertifying 
ompiler thatgenerates proof s
ripts as 
erti�
ates. More pre
isely, our approa
h is 
hara
ter-ized by the following three aspe
ts (
f. [17℄):1. Ma
hine-
he
kability and independen
e of logi
: All spe
i�
ations and proofsare ma
hine-
he
kable based on a formal general logi
, that is, a logi
 thatis independent of languages and te
hniques used in the translation. We useIsabelle/HOL as our spe
i�
ation and veri�
ation framework.2. Translation 
ontra
t: We require an expli
it translation 
ontra
t formallyspe
ifying the semanti
s of sour
e and target language and the translation
orre
tness predi
ate 
orrTransl(S ;T ) expressing the fa
t that T is a 
orre
ttranslation of S.3. Certifying 
ompiler: We are interested in a te
hnique where the 
ompilergenerates proof s
ripts as 
he
kable 
erti�
ates.Ma
hine-
he
kability is advisable be
ause of the 
omplexity and size of the prooftasks. Using a logi
al framework that is not spe
i�
ally developed for the trans-lation task and used in many other areas, in
reases the 
on�den
e in the frame-work. Of 
ourse, as argued in [17℄, a framework in whi
h only a very small 
orehas to be trusted is desirable. An expli
it translation 
ontra
t plays the roleof the spe
i�
ation of the proof task. It is the 
ontra
t between produ
er and
lient of the 
ompiler and should thus be available to and 
omprehensible forthe 
lient. In parti
ular, it 
an and should be independent of the stru
ture andalgorithms of the 
ompilers satisfying the 
ontra
t.We developed our 
ertifying 
ompiler to gain experien
e with the des
ribedapproa
h and to 
reate a testbed for the validation of di�erent te
hniques togenerate ma
hine-
he
kable 
erti�
ates. The te
hniques 
an di�er in the needede�orts to instrument the 
ompiler for 
erti�
ate generation, in the stru
tureand size of the 
erti�
ate, and the eÆ
ien
y of 
he
king 
erti�
ates. The mainte
hni
al 
ontributions of this paper are:{ Te
hniques for stru
turing the 
erti�
ation into program dependent and in-dependent parts.{ The appli
ation of the approa
h to tra
e-based translation 
ontra
ts.{ A re�ned te
hnique to automate 
ontra
t veri�
ation.{ Methods to 
ombine proof te
hniques to 
onstru
t 
ertifying 
ompilers.{ First experimental results, experien
es, and te
hni
al propositions on howto run proofs more eÆ
iently. (To the best of our knowledge, we are the �rstwho implemented this approa
h and gained pra
ti
al experien
e withit.)As in this se
tion, S denotes a sour
e program and T a target programthroughout this paper.



Overview. After the dis
ussion of related work in Se
t. 2, we explain translation
ontra
ts and spe
ify the 
ontra
t for our 
ompiler (Se
t. 3). Se
t. 4 presents ourproof te
hniques and des
ribes how 
erti�
ates are generated. Se
t. 5 shows howother proof te
hniques 
ould be integrated into our approa
h. Se
t. 6 des
ribesour experimental results and te
hniques to make 
erti�
ate 
he
king more eÆ-
ient. Se
t. 7 
ontains the 
on
lusions.2 Related WorkRinard et al. present in [18, 19℄ the 
redible 
ompilation approa
h for 
ertifying
ompilers. In parti
ular, they provide dedi
ated proof rules to verify programinvariants, even for programs with pointers. Our work builds on their approa
hand extends it by the notion of an expli
it translation 
ontra
t. Other distin
tionsare that we looked at a semanti
s based on output streams and that 
entral partof our 
ontribution is the implementation of the approa
h based on a generalhigher-order proof assistant.Proof 
arrying 
ode [12℄ is a framework for guaranteeing that 
ertain re-quirements or properties of a 
ompiled program are met, e.g. type safety or theabs
en
e of sta
k over
ows. That is, the 
arried proof 
erti�es a property onlydepending on T whereas we are interested in a property depending on S and T.In [10℄, Ne
ula and Lee des
ribed a 
ertifying 
ompiler for their approa
h guar-anteeing that target programs are type and memory safe. What is related toour work, is the 
lear separation between the 
ompilation infrastru
ture and the
he
kable 
eriti�
ate. That is why many te
hniques developed for proof 
arrying
ode apply as well to our approa
h (e.g. [1℄).A large body of resear
h has been done on 
erti�ed 
ompilers. Here, we 
anonly give an overview of the di�erent areas of work. In [9℄, the algorithms for asophiti
ated multi-phase 
ompiler ba
k end are proved 
orre
t within the Coqtheorem prover. In order to a
hieve a trusted implementation of the algorithm, itis exported dire
tly from the theorem prover to program 
ode. A similar approa
hbased on Isabelle/HOL is presented in [7℄. The veri�
ation of an optimizationalgorithm is des
ribed in [2℄; it uses a simulation proof for showing semanti
alequivalen
e. In an important step in the dire
tion of automating the generation of
orre
t program translation pro
edures is explained in [8℄. There, a spe
i�
ationlanguage is des
ribed for writing program transformations and their soundnessproperties. The properties are veri�ed by an automati
 theorem prover.In the translation validation approa
h [16, 20℄ the 
ompiler is regarded as abla
k box with atmost minor instrumentation. For ea
h run, sour
e and targetprogram are passed to a separate 
he
king unit 
omprising an analyzer generat-ing proofs. These proofs are 
he
ked with a proof 
he
ker. If the proof 
he
kersays OK, both programs are regarded as semanti
ally equivalent. A translationvalidation approa
h and implementation for the GNU C 
ompiler is des
ribedin [13℄. The paper [5℄ exampli�es that a 
ompiler 
erti�
ate 
he
ker implemen-tation may be mu
h easier to verify than a 
on
rete 
ompiler algorithm (andits implementation). The Veri�x proje
t [6, 3℄ had the goal to a
hieve 
orre
t
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Fig. 1. Certifying 
ompiler infrastru
ture
ertifying 
ompiler infrastru
ture
ompilation, too. Te
hniques and formalisms for 
ompiler result 
he
kers, de-
omposition of 
ompilers, and notions of semanti
al equivalen
e of sour
e andtarget program were developed.3 Translation Contra
t and Che
king Infrastru
tureIn this se
tion, we des
ribe translation 
ontra
ts, the 
he
king infrastru
ture, andexplain how it is realized for our 
ompiler. Figure 1 gives an overview of the 
er-tifying 
ompiler infrastru
ture for our approa
h. Spe
i�
ation and veri�
ation isdone in a general proof assistant for higher-order logi
. We use Isabelle/HOL [14℄for this purpose. The spe
i�
ations are divided into the 
ompiler-independenttranslation 
ontra
t (shown on the left of Fig. 1) and de�nitions and proper-ties that are 
ompiler-spe
i�
, but program independent (shown on the right ofFig. 1). Typi
ally, the 
ompiler-spe
i�
 part 
ontains de�nitions and propertiesof program analyses and intermediate languages. Given S, the 
ertifying 
om-piler generates T and a proof s
ript as 
erti�
ate. Running this proof s
ript bythe proof 
he
ker establishes the 
orre
tness of 
orrTransl(S ;T ). In our 
urrentsetting, sour
e and target programs are given as abstra
t syntax trees. Pars-ing of 
on
rete syntax is not 
onsidered so far. The proof must in
lude proofsfor all 
ompiler-spe
i�
 properties that are used, that is, it builds only on thetranslation 
ontra
t. In the following, we des
ribe the translation 
ontra
t forour 
ompiler. The 
ompiler-spe
i�
 de�nitions and properties are presented inSe
t. 4.Our 
ompiler reads programs written in a small C subset, translates theminto a 
ontrol 
ow graph (FGL), performs 
onstant folding (CF), dead assign-ment elimination (DAE) and loop invariant hoisting (LIH) on the 
ow graph,and �nally generates MIPS 
ode (CG) (see [15℄). The 
urrent implementationof proje
t only 
overs optimization and 
ode generation. We 
onsidered these



de
lareint a [4℄ = f2,�5,47,�4g;int i = 0;beginl1 : print i ;l2 : print a[ i ℄;l3 : i := i+1;l4 : if ( i<5) l1;l5 : exit ;end
Program P ; S ;T := ([vd ; : : : ; vd ℄; [ins; : : : ; ins℄)VarDe
l vd := (id ; �; v)Instru
tion ins := l : lval := e j l : print e jl : bran
h e l j l : goto l j l : exitExpression e := o j o1 bop o2 j unop oLValue lval := id j id [n℄ j id [id ℄Operand o := i j id j id [n℄ j id [id ℄Value v := i j arrvArray arrv := (�; [i ; : : : ; i ℄)Type � := int j int [n℄bop 2 f+;�; �;^;_;=; 6=; <;�g; unop 2 f�;:gid 2 Identi�er ; l 2 Label ; i 2 integer ; n 2 natFig. 2. Example and syntax of language FGLphases �rst, be
ause they are more 
hallenging from a veri�
ation point of view.Consequently, the translation 
ontra
t spe
i�es the 
ow graph language FGL, theused MIPS subset MSub and the translation 
orre
tness predi
ate 
orrTransl .Sour
e Language. Our sour
e language is the 
ow graph language FGL support-ing variables of primitive types, arrays, simple assignments, a print statementto output an integer, 
onditional and un
onditional bra
hes, and an exit state-ment. Figure 2 presents a simple program example and the de�nition of theabstra
t syntax3. As we are interested in the 
ompilation of both terminat-ing and nonterminating programs4, we use a semanti
s based on sequen
es ofoutputs produ
ed by the print instru
tions. (Similarly, we 
ould handle reads.)More pre
isely, the semanti
s of a program is denoted by a pair (s; o): s 
apturesthe termination Status: Token NORMAL indi
ates normal termination, ABRUPTabrupt termination, NONTERM nontermination. The se
ond 
omponent o is apossibly in�nite sequen
e of integers. In�nite sequen
es are modeled as fun
tionso : nat ! integer [ fundefg where o is either de�ned for all elements of nator for all k 2 [0 : : : n℄; n 2 nat . We 
all nat or [0 : : : n℄ the domain of o, denotedby dom(o). The k-th output of the program is o(k). The type of the outputfun
tions is named Output.The interesting parts of the operational semanti
s of FGL are given in Fig. 3.The main te
hni
al diÆ
ulty is to handle nontermination and in�nite output.We use the number of exe
ution steps to indu
tively de�ne the semanti
s asfollows. A program 
on�guration 
onsists of the label of the 
urrent instru
tion,the state of the variables, the status of the exe
ution, and the output produ
ed sofar. Ea
h 
omponent of the 
on�guration has its 
orresponding sele
tor fun
tion.If the 
urrent termination status is NORMAL or ABRUPT, stepFGL does not
hange the 
on�guration; otherwise it exe
utes the instru
tion at the given la-bel and yields the resulting 
on�guration. As it is standard, we dispense with3 To keep the presentation short, we slightly simpli�ed our language for this paper.4 Nonterminating programs o

ur for example in 
ontroler software.



Status = fNORMAL;ABRUPT;NONTERMgCon�guration = Label � State � Status �OutputstepFGL : Program �Con�guration �! Con�gurationnstepFGL : nat� Program� Configuration �! ConfigurationnstepFGL(0; P; C) = CnstepFGL(n+ 1; P; C) = nstepFGL(n; stepFGL(P;C))runFGL : nat� Program �! (Status�Output)runFGL(n; P ) = if :wellFormed (P ) then (ABRUPT; � n: undef) elselet(l; �; s; o) = nstepFGL(n; P; (l0; initFGL(P );NONTERM; � n: undef)) in (s; o)semFGL : Program �! (Status �Output)semFGL(P ) = if 9n: runFGL(n; P ) == (NORMAL; o) then (NORMAL; o)elseif 9n: runFGL(n; P ) == (ABRUPT; o) then (ABRUPT; o)else (NONTERM; � k: if 9n: k 2 dom(output(runFGL(n; P )))then 
hoose n: k 2 dom(output(runFGL(n; P )))in output (runFGL(n; P ))(k)else undef)Fig. 3. Semanti
s of language FGLthe formal de�nition of stepFGL. Fun
tion nstepFGL performs n steps. Fun
tionrunFGL 
he
ks whether a program P is well-formed, runs P for n steps with ini-tial state initFGL(P ) that is extra
ted from the variable de
laration, and sele
tsthe result from the �nal 
on�guration. The semanti
 fun
tion semFGL expressesthe overall behavior of a program P . If P terminates after n steps, semFGL yieldsthe 
orresponding result. Otherwise, the k-th output is obtained by looking for anumber n of program steps that produ
e at least k outputs. If su
h an n exists,let the program run n steps and take the k-th outputs. Otherwise the outputfun
tion remains unde�ned for k.Target Language. As target language, we use MSub, a subset of the MIPS as-sembler [15℄. An MSub program is a list of MIPS instru
tions. In parti
ular,we support the following instru
tions: integer addition, subtra
tion, multipli-
ation, the 
ompare operation \set less than", 
onditional and un
onditionalbran
hes, store and load instru
tions, system 
all instru
tions for output andreturn. Abrupt termination is indi
ated by setting a dedi
ated 
ag and 
allingreturn. The formalization is very similar to that of FGL. The main di�eren
eis that MSub uses registers and addressable memory as storage. The fun
tionsstepMSub , nstepMSub , runMSub, and semMSub are almost de�ned as in Fig. 2.Translation Corre
tness Predi
ate. The 
orre
tness predi
ate 
orrTransl(S ;T )de�nes when T is 
onsidered to be a 
orre
t translation of S. It should beindependent of the developed 
ompiler. For our 
ompiler and in 
omparable
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S :
T : Fig. 4. Runtime behavior of programs S and Tps
enarios, one 
an simply use the equality of the semanti
s of sour
e and targetlanguage to de�ne 
orrTransl :
orrTransl(S; T ) =def ( semFGL(S) = semMSub(T ) )For full-blown programming languages, the 
orre
tness predi
ate 
an be
omemore 
omplex. One reason is nondeterminism in the sour
e language, for ex-ample 
aused by 
on
urren
y 
onstru
ts. Another reason is the use of boundedressour
es. For example, the sour
e language semanti
s might not 
apture pro-gram abortion due to la
k of memory. Then, a translation of sour
e S might be
onsidered 
orre
t, if the target obey S's semanti
s as long as there is enoughmemory and aborts otherwise.4 Proof Te
hnique for Certifying TranslationsThis se
tion explains the simulation-based proof te
hnique that we use in our
ertifying 
ompiler. It des
ribes how the proofs are stru
tured into program-independent and program-dependent parts and how the generated program-dependent parts look like.As it is the 
ase for most 
ompilers, we assume that translations are dividedinto a number of phases, ea
h phase having a sour
e and target language. Forexample, our 
ompiler 
onsists of �ve phases, one that translates the C subsetinto the intermediate language FGL, three optimization phases with FGL assour
e and target language, and �nally the 
ode generation produ
ing MSub
ode. We show for ea
h5 phase the semanti
 equality semS (S ) = semT (T ). Theproof of our 
orre
tness predi
ate follows by transitivity of equality.<<<<<<< .mine ======= >>>>>>> .r4574.1 Simulation Proof for a Single PhaseSemanti
 equality of a single phase is shown by a simulation-based te
hnique (forthe ba
kground e.g. [4℄). Figure 4 illustrates the underlying proof idea. It shows5 As said above, the proof generation for the �rst phase is not yet implemented.



the exe
ution tra
es of a sour
e program and a target program 
onsisting of labelslj and kj resp. and states mj and m0j . The outputs ij and i0j are given above andbelow the tra
es. The simulation proof is based on a stati
 de
omposition of the
ow graphs of S and T into paths of �nite length. Ea
h �nite path is regardedas an atomi
 step in our simulation proof.The de�nitions of the 
ow graphs for FGL and MSub are straightforward.We assume that nodes are identi�ed by their labels, and that the su

essorrelation is denoted by su

. A path � of length j�j is a non-empty list of la-bels �(0); : : : ; �(j�j) su
h that su

(�j ; �j+1). For 
onstant folding (CF), deadassignment elimination (DAE), and 
odegeneration (CG), we only need a de-
omposition te
hnique with non-overlapping paths where all paths starting inthe same node have the same length. For CF the length of all paths in sour
eand target is one. For DAE the paths in the sour
e may be longer than one, 
on-taining one live assignment and several dead assignments; in the target pathshave the length one. For CG the length of all paths in the sour
e is one and inthe target one or larger. For optimizations modifying the program stru
ture, likeour loop invariant hoisting (LIH), we developed a de
omposition te
hnique withoverlapping paths. For brevity, we only 
onsider a simpler de
omposition here.The simulation-based proof te
hnique is the same for both 
ases.A de
omposition for a program PL of language L with labels BL is formalizedas a fun
tion dL : BL ! nat su
h that dL(l) > 0 i� l is the start node of a path.In that 
ase dL(l) is the length of the paths starting at l. Otherwise, dL(l) iszero, indi
ating that dL is not de�ned for l. The details of dL and de�nition ofwell-formedness are given in the appendix.The informal idea underlying the simulation proof is that whenever we startsour
e program S and target T in 
on�gurations satisfying the simulation invari-ant R (see Fig. 4) and then iteratively follow a path in S and the 
orrespondingpath in T , we rea
h 
on�gurations that satisfy R. In the following, we des
ribethose aspe
ts of the proof te
hnique in more detail that we need to explain whi
hparts of the proofs are program-independent and whi
h parts are generated. Forany program P with initial 
on�guration 
P0 , a wellformed de
omposition dPde�nes a sequen
e of 
on�gurations 
Pi by 
Pi+1 =def nstep(dP (label(
Pi )); P; 
Pi )and a sequen
e of partial outputs oPi su
h that output(
Pi ) 
on
atenated withoPi equals 
Pi+1, that is, oPi is the output generated by exe
uting the instru
tionsof a path starting at label(
Pi ).For any sour
e and target programs S and T and wellformed de
ompositionsdS and dT , a binary relation R[S; dS ; T; dT ℄ over the 
on�gurations of S and Tis 
alled a simulation invariant i�R[S; dS; T; dT ℄(
S0 ; 
T0 ) ^8 i 2 nat: R[S; dS ; T; dT ℄(
Si ; 
Ti ) =)R[S; dS; T; dT ℄(
Si+1; 
Ti+1) ^ status(
Si+1) = status(
Ti+1) ^ oSi = oTiThe 
orre
tness proofs of all phases are based on the following program-indepen-dent main lemma that is proved on
e and used in all program dependent proofs:



Lemma 1. (bisimulation lemma) For any S and T with wellformed de
ompo-sitions dS and dT , if there exists a simulation invariant R[S; dS ; T; dT ℄, then Sand T are semanti
ally equivalent, that is, semSL(S) = semTL(T )The task of a 
ertifying 
ompiler is to 
ome up with appropriate de
om-positions dS and dT , a relation R[S; dS ; T; dT ℄ over 
on�gurations, and a proofthat R[S; dS ; T; dT ℄ is a simulation invariant. The invariant typi
ally 
onsists ofprogram-independent and program-dependent parts. The program-independentparts 
apture the behavior underlying the optimization or translation phase.Program-dependent are the label relation CLABS expressing the 
orresponden
ebetween the labels of sour
e and target and further information relevant for theparti
ular phase. We demonstrate this in the following subse
tion.4.2 Phase-spe
i�
 Simulation RelationsIn this subse
tion, we explain the simulation relations for 
onstant folding and
ode generation.Simulation Relation for CF. As 
onstant folding only modi�es the instru
tionsof the sour
e program, but not the 
ow graph stru
ture, we 
an use the trivialde
omposition where all paths have length one and CLABS is the equality onlabels. This is illustrated on the left-hand side of Fig. 5. Thus, the only program-dependent part of the simulation relation RCF is the result of the ConstantFolding Analysis. The analysis result �S : B(S) ! (Identifier ,! integer)maps the label set B(S) of the sour
e program S to partial fun
tions 
apturingfor a subset of the variables in the program a 
onstant value. For example, �S(l)
aptures for all variables that are dete
ted to be 
onstant at l their values.Based on this information, RCF is de�ned by:RCF [S; dS ; T; dT ℄(�S)((l;m; s; o); (l0;m0; s0; o0)) =def let inv = �S(l) inl = l0 ^m = m0 ^ s = s0 ^ o = o0 ^ 8 id 2 dom(inv): inv(id) = m(id)Simulation Relation for CG. The simulation relation RCG for the 
ode gener-ation depends on the relation CLABS of labels in sour
e and target and onthe allo
ation of variables to registers and memory 
ells. As illustrated in Fig. 5,CLABS maps FGL labels to labels of MSub instru
tions su
h that paths in FGLhave length one and paths in MSub are usually larger than one. Allo
ation is de-s
ribed as a mapping � from the identi�ers Identif [S℄ of program S to adresses.An address is a register number or a memory address. The predi
ate isArr[S℄(id)indi
ates whether id denotes an array in S. In that 
ase, indi
es[S℄(id) denotesthe set of allowed indi
es.RCG[S; dS; T; dT ℄(CLABS; �)((l;m; s; o); (l0; (regs;mem); s0; o0))) =def(l; l0) 2 CLABS ^ s = s0 ^ o = o0 ^8 id 2 Identif [S℄):( :isArr[S℄(id) ^ �(id) 2 dom(regs)^m(id) = regs(�(id)) )_ ( :isArr[S℄(id) ^ �(id) 2 dom(mem)^m(id) = mem(�(id)) )_ ( isArr[S℄(id) ^ 8n 2 indi
es[S℄(id):(�(id) + 4 � n) 2 dom(mem) ^m(id; n) = mem(�(id) + 4 � n) )
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CLABSCF CLABSCG
CF CG

Fig. 5. Corresponding label relation for CF and CG4.3 Proof GenerationThis subse
tion des
ribes the proof parts generated by the 
ompiler for a givenphase and program. (The proof for a multi-phase translation is obtained byusing the transitivity of equality; see above.) As illustrated for RCF and RCG,the simulation relations are parameterized by sour
e and target programs, bythe 
ow graph de
ompositions, and by some phase-spe
i�
 information like forexample � and �. Based on the knowledge on S and T , the 
ompiler generatesthe following spe
i�
ations for the proof assistant:1. De�nions for programs, the 
ow graph de
ompositions, the relation CLABS,and the phase-spe
i�
 information psinfo .2. A proof s
ript showing that the de
ompositions dS and dT are well-formed.3. Proof s
ripts showing phase-spe
i�
 properties (e.g. the inje
tivity of theallo
ation mapping �).4. A proof s
ript showing that R[S; dS ; T; dT ℄(psinfo)(
S0 ; 
T0 ) holds for the ini-tial 
on�gurations.5. For ea
h pair of labels (l; l0) 2 CLABS a lemma of the form given in Fig. 6.These lemmas are 
alled simulation-blo
k lemmas.6. Proof s
ripts for the simulation-blo
k lemmas.7. A proof s
ript showing that the simulation-blo
k lemmas imply thatR[S; dS ; T; dT ℄(psinfo) is a simulation invariant and that applies the bisim-ulation lemma to obtain the 
orre
tness of the 
onsidered phase.The simulation-blo
k lemmas in their 
on
rete form, that is, with all program-dependent parameters instantiated express that running one or a small num-ber of instru
tions on the sour
e side has the same e�e
t as running a 
ertainnumber of instru
tions on the target side. For given S and T , there is a �-nite number of simulation-blo
k lemmas and ea
h lemma 
overs the exe
ution



8m;s; o;m0; s0; o0:R[S; dS; T; dT ℄(psinfo)((l; m; s; o); (l0;m0; s0; o0))=)let 
 = nstepSL(dS(l); S; (l;m; s; o))and 
0 = nstepTL(dT (l0); T; (l0;m0; s0; o0))in R[S; dS ; T; dT ℄(psinfo)(
; 
0) ^ status(
) = status(
0) ^ output(
) = output(
0)Fig. 6. Lemma for simulation blo
ks starting at l and l0of 
orresponding paths of S and T . As the paths 
over the 
ow graph of S, aproof by 
ase distin
tion allows us to derive from the simulation-blo
k lemmasthat R[S; dS ; T; dT ℄(psinfo) is a simulation invariant and that the bisimulationlemma yields the overall proof goal. Ex
ept for this 
ase distin
tion, most proofsare essentially rewriting proofs enfolding the semanti
s de�nitions for the in-stru
tions.5 Using Other Te
hniques for Certifying CompilersThe 
entral idea of the 
ertifying 
ompiler approa
h is that the 
lient of the
ompiler obtains a 
he
kable 
erti�
ate for the 
orre
tness of a translation. Theveri�
ation te
hnique presented in the last se
tion is only one way to generate the
erti�
ates. Here, we shortly des
ribe and dis
uss how te
hniques for algorithmveri�
ation and translation validation 
an be used for our goals.Algorithm Veri�
ation. Following a te
hnique sket
hed in [9℄, Se
t. 2, 
orre
tnessproofs for all or some of the algorithms in a 
ompiler 
an be used to obtaintranslation 
erti�
ates. Let us assume that the 
ompilation algorithm is spe
i�edas a 
omputable fun
tion 
omp in the higher-order logi
 and that we have a
orre
tness proof for it, i.e. a proof for:8S:S 2 SL : 
orrTransl(S; 
omp(S))If an implementation i
omp of the 
ompiler produ
es a target T for a sour
eprogram S, we 
an 
onstru
t a 
erti�
ate for 
orrTransl(S; T ) by verifying
omp(S) = T using rewriting te
hniques and then instantiating the above gen-eral 
orre
tness proof. The advantage of this approa
h over 
ompiler 
erti�
ationis that a proof of the implementation of i
omp is 
orre
t 
an be by passed. Theadvantage over our approa
h is that the 
ompiler implementation needs no in-strumentation. Similar to our approa
h, the 
onstru
tion of the 
erti�
ate 
anfail, namely if 
omp(S) = T 
annot be established. The disadvantages 
omparedto our approa
h are the following:1. The 
erti�
ates be
ome huge be
ause they in
ludes the 
orre
tness proof forthe translation of all programs. Leroy suggests in [9℄ to mitigate this problemby developing te
hniques of spe
ializing proofs.



2. Che
king 
omp(S) = T might be slower than 
he
king dedi
ated 
erti�
ates.3. To our experien
e, the proof of algorithm 
orre
tness is more 
omplex thanto proof the 
orre
tness of the translation result.Translation Validation. As said above, one disadvantage of our approa
h is theinstrumentation of the 
ompiler, be
ause instrumentation 
auses developmente�ort and in
reases the 
omplexity of the 
ompiler. By using te
hniques fromtranslation validation, the last problem 
ould be almost avoided. The idea is toredu
e instrumentation to a minimum and let the 
ompiler only generate some\hints", for example, on the allo
ation of variables to memory 
ells. Te
hniquesfrom translation validation (see in parti
ular [16℄) 
ould then be used to 
onstru
ta 
omplete proof s
ript from these hints. Even more in the line of translationvalidation is a te
hnique that avoids expli
it proof s
ripts. Based on the strategyme
hanisms of the underlying proof assistant, one 
ould develop proof ta
ti
sthat take the hints as input and dire
tly 
onstru
t a proof from them, that is,one would implement translation validation using the me
hanisms of the proofassistant. This te
hnique allows to use algorithm-independent proof te
hniquesof Se
t. 4 with a minimum of program-dependent information. We applied thiste
hnique to an optimization phase. Our �rst experien
es are very en
ouraging.6 Evaluation and Performan
e IssuesThis se
tion brie
y dis
usses performan
e issues 
on
erning the proof 
he
king.The generated proof s
ripts are run by Isabelle/HOL and it is 
he
ked whetherthey 
orre
tly 
onstru
t a proof. In the 
urrent implementation of Isabelle/HOL,
he
king/
onstru
tion of proofs that our approa
h generates is rather slow.6 Sofar, we identi�ed the following reasons for this behaviour:{ Many steps in our proofs are of a 
omputational nature. Exe
uting thesesteps in a theorem proving environment is very slow be
ause most of thesesteps are done by term rewriting on the data stru
ture underlying HOLformulas that is overly general and 
omplex for our tasks.{ In our proof s
ripts, several steps still use ta
ti
s of the theorem prover thatdo some sear
h.{ Finding an optimal order for the appli
ation of ta
ti
s is 
hallenging, par-tially be
ause the eÆ
ien
y properties of the proof assistant are diÆ
ult toanalyse.Con
erning the �rst item, we plan to 
ompare with other provers. The problemstated as se
ond item may be solved by using lower level ta
ti
s or spe
ial userde�ned ta
ti
s. In the following part, we give a simple example of how to improvethe problem mentioned in the third item: Improving eÆ
ien
y by restru
turingthe underlying proof te
hniques.The time 
onsuming part of a typi
al 
ode generation 
orre
tness proof is a
ase distin
tion on labels in FGL/MSub as des
ribed in Se
t. 4: For ea
h pair6 A

ording to our experien
e this is as well true for 
omparable proof assistants.



of 
orresponding labels in an FGL- and MSub-program, we have to prove thesimulation-blo
k lemma. As a straightforward approa
h to prove a single stepof the programs 
orre
t, one 
ould exe
ute the programs symboli
ally. Althoughsu
h proofs always su

eed in theory, they are forbiddingly slow to handle real-isti
 programs. The problem is that the approa
h needs a 
ase distin
tion on allvariables involved in the program. And, every array element 
ounts as a singlevariable in this distin
tion. Ea
h variable had to have a value equal to the 
or-responding memory lo
ation. Thus, in ea
h step for every variable o

uring inthe FGL program the 
orresponding memory lo
ation in the MSub program hadto be looked up. This 
orrespondan
e relation between variables and memory isstored in a list. Using Isabelle ta
ti
s ea
h look up took O(v) time with v beingthe number of variables. Hen
e, the time to pro
ess the proof for steps of theprogram was in O(l � v2) with l being the length of the program.In our 
urrent approa
h, we make use of the fa
t that ea
h step 
an beproved 
orre
t without looking at other variables not o

uring in the step ifthe allo
ation mapping � is inje
tive. Hen
e a variable's 
orresponding memorylo
ation is not altered if some others variable's memory lo
ation is 
hanged.With the help of this we 
an dismiss of the last 
ase distin
tion when provingthe inje
tivity of the mapping between variables and memory upfront. The proofof the steps 
an be 
ondu
ted in O(l � v). The proof of inje
tivity 
an be donein time O(v) for non-pathologi
al 
ases. Hen
e the 
omplete proof 
an be donein roughly O(l � v) time.7 Con
lusionFormal translation 
ontra
ts are the requirements spe
i�
ation for the develop-ment of 
erti�ed or 
ertifying 
ompilers. We used a 
ontra
t that spe
i�es se-manti
al equivalen
e on the basis of output tra
es of the 
onsidered sour
e andtarget language. This avoids to de�ne a relation between �nal program state and�nal memory state, and it supports nonterminating programs. We implementeda simple 
ertifying 
ompiler with optimization and 
ode generation phases thatprodu
es ma
hine-
he
kable proof s
ripts. Whereas 
urrent spe
i�
ation and ver-i�
ation te
hnology is suÆ
ient to express the translation 
ontra
t, additionalproperties, and proofs in a fairly 
onvenient way, the proof 
he
king te
hnology
ould be improved: It is mainly targeted at 
omplex intera
tive proofs and notsuitable to 
he
k simple, but large proofs. Future work in
ludes the extension ofour 
ompiler, as well as the appli
ation of the 
he
king approa
h to other areasof software te
hnology.Referen
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ompositionA de
omposition for a program PL of language L with labels BL is formalized as afun
tion dL : BL ! nat su
h that dL(l) > 0 i� l is the start node of a path. In that
ase dL(l) is the length of the paths starting at l. Otherwise, dL(l) is zero, indi
atingthat dL is not de�ned for l. Let start(dL) =def fl j dL(l) > 0g be the set of startinglabels of paths, end(dL) =def fl j 9� : dL(�(0)) 2 start(dL) ^ l = �(j�j)g be the setof end labels of paths, and between(dL) =def fl j 9�; j : dL(�(0)) 2 start(dL) ^ 0 <j < j�j ^ l = �(j)g be the set of labels between start and end. We say that dL iswellformed for PL, if the program entry label l0 2 start(dL), the program exit labelle 2 end(dL), ea
h path ending in l di�erent from le has a su

essor path starting in l,i.e., end(dL) n fleg = start(dL) n fl0g, and nodes between start and end label are notend labels of other paths, i.e., between(dL) \ (end(dL) [ fl0g = ;.


